Integration of genomic databases and bioinformatic approach to identify genomic variants for sjogren’s syndrome on multiple continents

Authors

  • Anisa Nova Puspitaningrum Faculty of Pharmacy, University of Ahmad Dahlan, Yogyakarta, Indonesia http://orcid.org/0000-0002-5619-2959
  • Dyah Aryani Perwitasari Faculty of Pharmacy, University of Ahmad Dahlan, Yogyakarta, Indonesia
  • Wirawan Adikusuma Departement of Pharmacy, University of Muhammadiyah Mataram, Mataram, Indonesia
  • Gina Noor Djalilah Medical faculty Muhammadiyah Surabaya, Surabaya, Indonesia
  • Haafizah Dania Faculty of Pharmacy, University of Ahmad Dahlan, Yogyakarta, Indonesia
  • Rita Maliza Biology Department, Faculty of Mathematics and Natural Sciences, Andalas University, Padang, West Sumatra, Indonesia
  • Imaniar Noor Faridah Faculty of Pharmacy, University of Ahmad Dahlan, Yogyakarta, Indonesia
  • Made Ary Sarasmita Department of Clinical Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan Pharmacy Study Program, Faculty of Science and Mathematics, Udayana University, Bali, Indonesia
  • Melodia Rezadhini Agricultural Microbiology, Faculty of Agriculture, Gadjah Mada University, Yogyakarta. Indonesia
  • Rocky Cheung Department of Chemistry and Biochemistry, University of California, Los Angeles, and CareDx, Inc.
  • Lalu Muhammad Irham Faculty of Pharmacy, University of Ahmad Dahlan, Yogyakarta, Indonesia

DOI:

https://doi.org/10.12928/mf.v19i2.23706

Keywords:

Sjogren’s syndrome, Autoimmune, Genome, Gene variation

Abstract

An autoimmune disorder is an abnormality that causes a disease. It is caused by a weakened immune system. One of the autoimmune diseases is Sjogren’s syndrome, which affects the salivary and lacrimal glands and causes dry mouth, dry eyes, and dry skin. Sjogren’s syndrome influences humans of every age, with the symptoms occurring at the age of 45–55 years and rarely in children. One of the factors causing Sjogren’s syndrome is genetic disorders. To identify genes that can influence Sjogren’s syndrome in this study, we used several databases, including GWAS Catalog, HaploReg Version 4.1, GTEX portal, and Ensembl, particularly to identify the gene expression profiles of TNIP1, TNFAIP3, and IRF5 and the quantitative properties of locus’ expression. This research showed that the missense variants and splice donor rs2233290, rs2230926, and rs2004640 influenced the susceptibility of autoimmune diseases, especially Sjogren’s syndrome, in the fibroblast tissue, sigmoid tissue, sigmoid colon, skin, esophagus, and adrenal glands. The allele frequency of each variant was then assessed in African, American, European, and Asian populations. Our data showed that TNIP1, TNFAIP3, and IRF5 genes in African and American populations had higher frequencies than in the Asian population. This implies that the last of the aforementioned populations might be relatively susceptible to the autoimmune disease Sjogren’s syndrome.

Author Biography

Anisa Nova Puspitaningrum, Faculty of Pharmacy, University of Ahmad Dahlan, Yogyakarta, Indonesia

-

References

Alani, H., Henty, J. R., Thompson, N. L., Jury, E., & Ciurtin, C. (2018). Systematic review and meta-analysis of the epidemiology of polyautoimmunity in Sjögren’s syndrome (secondary Sjögren’s syndrome) focusing on autoimmune rheumatic diseases. Scandinavian Journal of Rheumatology, 47(2), 141–154. https://doi.org/10.1080/03009742.2017.1324909

Burbelo, P. D., Ambatipudi, K., & Alevizos, I. (2014). Genome-wide association studies in Sjögren’s syndrome: What do the genes tell us about disease pathogenesis? Autoimmunity Reviews, 13(7), 756–761. https://doi.org/10.1016/j.autrev.2014.02.002

Bush, W. S., & Moore, J. H. (2012). Chapter 11: Genome-Wide Association Studies. PLoS Computational Biology, 8(12). https://doi.org/10.1371/journal.pcbi.1002822

Catrysse, L., Vereecke, L., Beyaert, R., & van Loo, G. (2014). A20 in inflammation and autoimmunity. Trends in Immunology, 35(1), 22–31. https://doi.org/10.1016/j.it.2013.10.005

Ciccacci, C., Latini, A., Perricone, C., Conigliaro, P., Colafrancesco, S., Ceccarelli, F., Priori, R., Conti, F., Perricone, R., Novelli, G., & Borgiani, P. (2019). TNFAIP3 gene polymorphisms in three common autoimmune diseases: Systemic lupus erythematosus, rheumatoid arthritis, and primary sjogren syndrome - association with disease susceptibility and clinical phenotypes in Italian patients. Journal of Immunology Research, 2019. https://doi.org/10.1155/2019/6728694

Dieudé, P., Guedj, M., Wipff, J., Avouac, J., Fajardy, I., Diot, E., Granel, B., Sibilia, J., Cabane, J., Mouthon, L., Cracowski, J. L., Carpentier, P. H., Hachulla, E., Meyer, O., Kahan, A., Boileau, C., & Allanore, Y. (2009). Association between the IRF5 rs2004640 functional polymorphism and systemic sclerosis: A new perspective for pulmonary fibrosis. Arthritis and Rheumatism, 60(1), 225–233. https://doi.org/10.1002/art.24183

Furqan, M., Kurniawan, R., & HP, K. (2020). Evaluasi Performa Support Vector Machine Classifier Terhadap Penyakit Mental. Jsinbis, 10(2), 203–210. https://doi.org/10.21456/vol10iss2pp203-210

García-Carrasco, M., Fuentes-Alexandro, S., Escárcega, R. O., Salgado, G., Riebeling, C., & Cervera, R. (2006). Pathophysiology of Sjögren’s Syndrome. Archives of Medical Research, 37(8), 921–932. https://doi.org/10.1016/j.arcmed.2006.08.002

Gregersen, P. K., Kosoy, R., Lee, A. T., Lamb, J., Sussman, J., Simpfendorfer, K. R., Pirskanen-matell, R., Piehl, F., Pan-, Q., Verschuuren, J. J. G. M., Titulaer, M. J., & Niks, E. H. (2012). Risk for Myasthenia Gravis maps to 151Pro→ Ala change in TNIP1 and to HLA-B*08. Annals of Neurology, 72(6), 927–935. https://doi.org/10.1002/ana.23691.Risk

Hao, G., Li, Y., Liu, J., & Wo, M. (2014). arthritis of southern Chinese Han population : a case-control study. 7(12), 8958–8961.

Irham, L. M., Chou, W. H., Calkins, M. J., Adikusuma, W., Hsieh, S. L., & Chang, W. C. (2020). Genetic variants that influence SARS-CoV-2 receptor TMPRSS2 expression among population cohorts from multiple continents. Biochemical and Biophysical Research Communications, 529(2), 263–269. https://doi.org/10.1016/j.bbrc.2020.05.179

Irham, L. M., Wong, H. S.-C., Chou, W.-H., Adikusuma, W., Mugiyanto, E., Huang, W.-C., & Chang, W.-C. (2020). Integration of genetic variants and gene network for drug repurposing in colorectal cancer. Pharmacological Research, 161, 105203. https://doi.org/10.1016/j.phrs.2020.105203

Kittridge, A., Routhouska, S. B., & Korman, N. J. (2011). Dermatologic manifestations of Sjögren syndrome. Journal of Cutaneous Medicine and Surgery, 15(1), 8–14. https://doi.org/10.2310/7750.2010.09033

Murti, B. T., Putri, A. D., Irham, L. M., Perwitasari, D. A., Hsieh, C.-M., Yang, P.-K., Kanchi, S., & Sabela, M. (2020). Current trends, achievements, and prospects of smart nanodevices in the global pharma market. In Nanomaterials in Diagnostic Tools and Devices (pp. 351–393). Elsevier. https://doi.org/10.1016/B978-0-12-817923-9.00013-4

Nezos, A., Gkioka, E., Koutsilieris, M., Voulgarelis, M., Tzioufas, A. G., & Mavragani, C. P. (2018). TNFAIP3 F127C coding variation in Greek primary sjogren’s syndrome patients. Journal of Immunology Research, 2018. https://doi.org/10.1155/2018/6923213

Nordmark, G., Kristjansdottir, G., Theander, E., Eriksson, P., Brun, J. G., Wang, C., Padyukov, L., Truedsson, L., Alm, G., Eloranta, M. L., Jonsson, R., Rönnblom, L., & Syvänen, A. C. (2009). Additive effects of the major risk alleles of IRF5 and STAT4 in primary Sjögren’s syndrome. Genes and Immunity, 10(1), 68–76. https://doi.org/10.1038/gene.2008.94

Qin, B., Wang, J., Yang, Z., Yang, M., Ma, N., Huang, F., & Zhong, R. (2015). Epidemiology of primary Sjögren’s syndrome: A systematic review and meta-analysis. Annals of the Rheumatic Diseases, 74(11), 1983–1989. https://doi.org/10.1136/annrheumdis-2014-205375

Rhodus, N. L. (2017). Sjögren’s syndrome. Quintessence International, 78(8), 689–699.

Shamilov, R., & Aneskievich, B. J. (2018). TNIP1 in autoimmune diseases: Regulation of toll-like receptor signaling. Journal of Immunology Research, 2018. https://doi.org/10.1155/2018/3491269

Stefanski, A. L., Tomiak, C., Pleyer, U., Dietrich, T., Burmester, G. R., & Dörner, T. (2017). The diagnosis and treatment of Sjögren’s syndrome. Deutsches Arzteblatt International, 114(20). https://doi.org/10.3238/arztebl.2017.0354

Sulistyani, N., & Nurkhasanah. (2017). The cytotoxic effect of Elephantopus scaber Linn extract against breast cancer (T47D) cells. IOP Conference Series: Materials Science and Engineering, 259, 012006. https://doi.org/10.1088/1757-899X/259/1/012006

Teos, L. Y., & Alevizos, I. (2017). Genetics of Sjögren’s syndrome. Clinical Immunology, 182, 41–47. https://doi.org/10.1016/j.clim.2017.04.018

Yao, C., Joehanes, R., Johnson, A. D., Huan, T., Liu, C., Freedman, J. E., Munson, P. J., Hill, D. E., Vidal, M., & Levy, D. (2017). Dynamic Role of trans Regulation of Gene Expression in Relation to Complex Traits. American Journal of Human Genetics, 100(4), 571–580. https://doi.org/10.1016/j.ajhg.2017.02.003

Downloads

Published

2022-08-22

Issue

Section

Pharmaceutical & Technology