INTERAKSI MOLEKULER INHIBITOR DIPEPTIDYL PEPTIDASE-IV (DPP-IV) DARI PROTEIN SUSU KAMBING SECARA IN SILICO SEBAGAI KANDIDAT ANTIDIABETES
DOI:
https://doi.org/10.12928/mf.v17i1.16249Keywords:
Dipeptidyl peptidase-IV (DPP-IV), peptida, protein susu kambing, penambatan molekuler berbasis protein-peptida, studi in silicoAbstract
Dipeptidyl peptidase-IV (DPP-IV) merupakan salah satu target dalam pengobatan diabetes tipe-2. Beberapa obat golongan gliptin yang tersedia secara komersial seperti sitagliptin, anagliptin, linagliptin, saxagliptin, dan alogliptin secara khusus digunakan sebagai inhibitor DPP-IV untuk pasien diabetes. Saat ini, penggunaan peptida pada protein susu kambing untuk mengobati diabetes telah dilaporkan dalam berbagai percobaan in vitro. Namun, pemahaman tentang interaksi molekuler penghambatan peptida tersebut terhadap DPP-IV masih kurang. Penelitian ini bertujuan untuk melakukan identifikasi, evaluasi, dan eksplorasi mengenai afinitas beberapa molekul peptida tersebut, yaitu MHQPPQPL, SPTVMFPPQSVL, VMFPPQSVL, INNQFLPYPY, dan AWPQYL terhadap makromolekul DPP-IV dengan menggunakan simulasi penambatan molekuler berbasis protein-peptida. Sekuensing peptida terlebih dahulu dilakukan pemodelan dengan menggunakan server PEP-FOLD. Konformasi terbaik dipilih untuk dilakukan studi interaksi terhadap makromolekul DPP-IV dengan menggunakan software HPEPDock. Identifikasi lebih lanjut dilakukan terhadap interaksi molekuler yang terbentuk dengan menggunakan software BIOVIA Discovery Studio 2020. Berdasarkan hasil dari penambatan molekuler berbasis protein-peptida diperoleh bahwa molekul peptida INNQFLPYPY memiliki afinitas yang paling baik terhadap makromolekul DPP-IV, yaitu dengan nilai energi bebas ikatan 923,46 kJ/mol. Dengan demikian, peptida tersebut diprediksi dapat digunakan sebagai kandidat inhibitor DPP-IV.
References
Bolen, S. D., & Maruthur, N. M. (2016). The safety of incretin based drug treatments for type 2 diabetes. BMJ. 352: 801.
Chavan, S. G., & Deobagkar, D. D. (2015). An in silico insight into novel therapeutic interaction of LTNF peptide-LT10 and design of structure based peptidomimetics for putative anti-diabetic activity. PLoS ONE, March 2015:1-20
Doggrell, S. A., & Dimmitt, S. B. (2016). Sitagliptin and other gliptins - Why prescribe them? Expert Opinion on Pharmacotherapy, 17(6): 757-760
Drucker, D. J., & Nauck, M. A. (2006). The incretin system: glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes. Lancet. 368(9548): 1696-1705.
Gupta, V., & Kalra, S. (2011). Choosing a Gliptin. Indian Journal of Endocrinology and Metabolism. 15(4): 298-308.
Kemmish, H., Fasnacht, M., & Yan, L. (2017). Fully automated antibody structure prediction using BIOVIA tools: Validation study. PLoS ONE. 12: e0177923.
Kim, B. R., Kim, H. Y., Choi, I., Kim, J. B., Jin, C. H., & Han, A. R. (2018). DPP-IV inhibitory potentials of flavonol glycosides isolated from the seeds of lens culinaris: In vitro and molecular docking analyses. Molecules. 23: 8.
Kim, D., Wang, L., Beconi, M., Eiermann, G. J., Fisher, M. H., He, H., Weber, A. E. (2005). (2R)-4-Oxo-4-[3-(trifluoromethyl)-5,6-dihydro[1,2,4]triazolo[4,3-a] pyrazin-7(8H)-yl]-1-(2,4,5-trifluorophenyl)butan-2-amine: A potent, orally active dipeptidyl peptidase IV inhibitor for the treatment of type 2 diabetes. Journal of Medicinal Chemistry. 48(1): 141-151.
Kurniawan, F., Miura, Y., Kartasasmita, R. E., Mutalib, A., Yoshioka, N., & Tjahjono, D. H. (2018). In silico study, synthesis, and cytotoxic activities of porphyrin derivatives. 11: 8.. Pharmaceuticals.
Lacroix, I. M. E., & Li-Chan, E. C. Y. (2012). Evaluation of the potential of dietary proteins as precursors of dipeptidyl peptidase (DPP)-IV inhibitors by an in silico approach. Journal of Functional Foods. 4(2): 403-422.
Lafarga, T., Rai, D. K., O’connor, P., & Hayes, M. (2016). Generation of Bioactive Hydrolysates and Peptides from Bovine Hemoglobin with In Vitro Renin, Angiotensin-I-Converting Enzyme and Dipeptidyl Peptidase-IV Inhibitory Activities. Journal of Food Biochemistry. 40(5): 673-685.
Li, L., Li, S., Deng, K., Liu, J., Vandvik, P. O., Zhao, P., Sun, X. (2016). Dipeptidyl peptidase-4 inhibitors and risk of heart failure in type 2 diabetes: Systematic review and meta-analysis of randomised and observational studies. The BMJ. 352: 610.
Lovshin, J. A., & Drucker, D. J. (2009). Incretin-based therapies for type 2 diabetes mellitus. Nature Reviews Endocrinology. 5(5): 262-269.
Nongonierma, A. B., & FitzGerald, R. J. (2013). Inhibition of dipeptidyl peptidase IV (DPP-IV) by proline containing casein-derived peptides. Journal of Functional Foods. 5(4): 1909-1917.
Norel, R., Sheinerman, F., Petrey, D., & Honig, B. (2008). Electrostatic contributions to protein-protein interactions: Fast energetic filters for docking and their physical basis. Protein Science. 10: 2147-2161.
Shen, Y., Maupetit, J., Derreumaux, P., & Tufféry, P. (2014). Improved PEP-FOLD approach for peptide and miniprotein structure prediction. Journal of Chemical Theory and Computation. 10(10): 4745-4758.
Thévenet, P., Shen, Y., Maupetit, J., Guyon, F., Derreumaux, P., & Tufféry, P. (2012). PEP-FOLD: An updated de novo structure prediction server for both linear and disulfide bonded cyclic peptides. Nucleic Acids Research. 40: 288-293.
Tseng, C. H. (2016). Sitagliptin and pancreatic cancer risk in patients with type 2 diabetes. European Journal of Clinical Investigation. 46(1): 70-79.
Uenishi, H., Kabuki, T., Seto, Y., Serizawa, A., & Nakajima, H. (2012). Isolation and identification of casein-derived dipeptidyl-peptidase 4 (DPP-4)-inhibitory peptide LPQNIPPL from gouda-type cheese and its effect on plasma glucose in rats. International Dairy Journal. 22(1): 24-30.
Zhang, Y., Chen, R., Ma, H., & Chen, S. (2015). Isolation and Identification of Dipeptidyl Peptidase IV-Inhibitory Peptides from Trypsin/Chymotrypsin-Treated Goat Milk Casein Hydrolysates by 2D-TLC and LC-MS/MS. Journal of Agricultural and Food Chemistry. 63(40): 8819-8828.
Zhou, P., Jin, B., Li, H., & Huang, S. Y. (2018). HPEPDOCK: A web server for blind peptide-protein docking based on a hierarchical algorithm. Nucleic Acids Research. 46(1): 443-452.
Zhou, P., Li, B., Yan, Y., Jin, B., Wang, L., & Huang, S. Y. (2018). Hierarchical Flexible Peptide Docking by Conformer Generation and Ensemble Docking of Peptides. Journal of Chemical Information and Modeling. 58(6): 1292-1302.
Downloads
Published
Issue
Section
License
Authors who publish with Media Farmasi agree to the following terms:
- Authors retain copyright and grant the journal the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY-SA 4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
This work is licensed under a Creative Commons Attribution 4.0 International License