BILANGAN KROMATIK LOKASI PADA GRAF C_n \odot P_1

Authors

  • Deddy Rahmadi Universitas Islam Negeri Sunan Kalijaga
  • Muhammad Luthfi Kamal Universitas Islam Negeri Sunan Kalijaga
  • Dhiya Anisah Utami Universitas Islam Negeri Sunan Kalijaga
  • Alvian Nur Rohman Universitas Islam Negeri Sunan Kalijaga
  • Muhammad Ridho Ramadhan Universitas Islam Negeri Sunan Kalijaga

DOI:

https://doi.org/10.26555/jim.v11i1.28401

Keywords:

Bilangan kromatik lokasi, Graf hasil korona, Pewarnaan lokasi, Path, Cycle

Abstract

Bilangan kromatik lokasi suatu graf merupakan perluasan dari konsep dimensi partisi dan pewarnaan titik pada suatu graf. Jumlah minimum warna yang diperlukan untuk melakukan pewarnaan lokasi pada graf disebut bilangan kromatik lokasi graf. Penelitian ini merupakan studi literatur yang membahas tentang bilangan kromatik lokasi pada graf C_n \odot P_1. Pendekatan yang digunakan untuk menghitung bilangan kromatik lokasi adalah melibatkan penentuan batas atas dan bawah.

References

N. M. Surbakti and F. Ramadhani, “Implementation of the Greedy Algorithm for Coloring graphs based on the Four-Color Theorem”, Sudo Jurnal Teknik Informatika, 1(4), pp. 178-182, 2022, https://doi.org/10.56211/sudo.v1i4.157

U. A. Bhatti, H. Tang, G. Wu, S. Marjan, and A. Hussains, “Deep Learning with Graph Convolutional Networks: An Overview and Latest Applications in Computational Intelligence”, International Journal of Intelligence Systems, pp. 1-28, 2023, https://doi.org/10.1155/2023/8342104

F. Harary and R.A. Melter, "On the metric dimension of a graph", Ars Combinatoria, 2, pp. 191-195, 1976.

T.A. Kusmayadi, S. Kuntari, D. Rahmadi, and F. A. Lathifah, "On the strong metric dimension of some related wheel graph", Far East Journal Mathematical Sciences, 99(9), pp. 1325-1334, 2016.

D. Rahmadi and Y. Susanti, "The k-metric dimension of double fan graph", Journal of Innovation and Technology in Mathematics and Mathematics Education, 2, pp. 31-35, 2022

D. Rahmadi, “MIXED METRIC DIMENSION OF DOUBLE FAN GRAPH”, JD, vol. 6, no. 1, pp. 52-56, Feb. 2024.

G. Chartrand, D. Erwin, M. A. Henning, P.J. Slater, and P. Zhang, “The locating-chromatic number of a graph”, Bull. Inst. Combin. Appl., 36, pp. 89-101

Asmiati, H. Assiyatun, and E.T. Baskoro, “Locating-chromatic number of amalgamation of stars”, ITB J. Sci., 43A, pp.1-8, 2010.

Asmiati, E.T. Baskoro, H. Assiyatun, D. Suprijanto, R. Simanjuntak, and S. Uttunggadewa, “The locating-chromating number of firecracker graphs”, Far East Journal of Mathematical Sciences, 63, pp. 11-23, 2012.

Asmiati, I.K.S.G. Yana, and L. Yulianti, “On the locating chromatic number of certain barbell graphs”, Int. J. Math. Math. Sci. 2018 (2018), Article ID 5327504

N. Inayah, W. Aribowo, and M.M.W. Yahya, “The locating chromatic number of book graph”, J. Math. 2021 (2021), Article ID 3716361

A. Irawan, Asmiati, L. Zakaria, and K. Muludi, “The locating-chromatic number of origami Graphs”, Algorithms 14 (2021), 167.

R. Sakri and M. Abbas, “On locating chromatic number of mobius ladder graphs”, Proyecciones 40 (2021), 659–669.

I. W. Sudarsana, F. Susanto, S. Musdalifah, “The locating chromatic number for m-shadow of a connected graph”, Electronic Journal of Graph Theory and Applications, 10(2), pp. 589-601, 2022

N. M. Surbakti, D. Kartika, H. Nasution, and S. Dewi, “The locating number for pizza graphs”, Sainmatika: Jurnal Ilmiah Matematika dan Ilmu Pengetahuan Alam, 20(2), pp. 126-131, 2023.

H. Assiyatun, D.K. Syofyan, and E.T. Baskoro, “Calculating an upper bound of the locating chromatic number of trees”, Theoret. Comput. Sci. 806, pp. 305–309, 2020.

E.T. Baskoro and D.I.D. Primaskun, “Improved algorithm for the locating chromatic number of trees”, Theoret. Comput. Sci. 856, 165–168, 2021.

M. Furuya and N. Matsumoto, “Upper bounds on the locating chromatic number of trees”, Discrete Appl. Math. 257, 338–341, 2019.

Y. Hafidh and E.T. Baskoro, “On the locating chromatic number of trees”, Int. J. Math. Comput. Sci. 17, 377–394, 2022.

Downloads

Published

2024-08-30

Issue

Section

Articles