Pemodelan Stokastik dan Probability of Extinction Penyebaran Penyakit Kaki gajah

Authors

  • Melania S Biri Program Studi Matematika, Universitas Nusa Cendana, Kupang-NTT
  • Irvandi G Pasangka Program Studi Matematika, Universitas Nusa Cendana, Kupang-NTT
  • Ariyanto Ariyanto Program Studi Matematika, Universitas Nusa Cendana, Kupang-NTT
  • Meksianis Zadrak Ndi University of Nusa Cendana, Kupang-NTT

DOI:

https://doi.org/10.26555/konvergensi.v9i1.21848

Abstract

Model stokastik berbasis Continous Time Markov Chain untuk dinamika penyebaran penyakit kaki gajah diformulasi dan probability   of extinction atau peluang kepunahan ditentukan. Hasil penelitian menunjukkan bahwa kepunahan penyakit akan semakin besar apabila jumlah individu terinfeksi pada awal epidemik kecil.

References

M. Z. Ndii, A. R. Mage, J. J. Messakh, and B. S. Djahi, “Optimal vaccination strategy for dengue transmission in kupang city, indonesia,†Heliyon, vol. 6, no. 11, p. e05345, 2020.

E. Banni, M. Kleden, M. Lobo, and M. Ndii, “Estimasi reproduction number model matematika penyebaran malaria di sumba tengah, indonesia,†Jambura Journal of Biomathematics, vol. 2, no. 1, 2021.

H. S. Panigoro, E. Rahmi, N. Achmad, and S. L. Mahmud, “The influence of additive allee effect and periodic harvesting to the dynamics of leslie-gower predator-prey model,†Jambura Journal of Mathematics, vol. 2, no. 2, pp. 87–96, 2020.

D. Tambaru, B. S. Djahi, and M. Z. Ndii, “The effects of hard water consumption on kidney function: Insights from mathematical modelling,†AIP Conference Proceedings, vol. 1937, no. 1, p. 020020, 2018.

Y. Adi and A. Thobirin, “Backward bifurcation in a within-host tuberculosis model,†Advances in Mathematics: Scientific Journal, vol. 9, no. 9, 2020.

R. U. Hurint, M. Z. Ndii, , and M. Lobo, “Analisis sensitivitas dari model epidemi seir,†Natural Science: Journal of Science and Technology, 2017.

P. K. N. Salonga, V. M. P. Mendoza, R. G. Mendoza, and V. Y. Belizario, “A del of the dynamics of lymphatic filariasis in caraga region, the philippines,†Royal Society Open Science, vol. 8, no. 6, p. 201965, 2021.

H. Tasman, T. Supali, A. K. Supriatna, N. Nuraini, and E. Soewono, “A mathematical model for long-term effect of diethylcarbamazine-albendazole mass drug administration on lymphatic filariasis,†AIP Conference Proceedings, vol. 1651, no. 1, pp. 138–146, 2015.

P. M. Mwamtobe, S. M. Simelane, S. Abelman, and J. M. Tchuenche, “Mathematical analysis of a lymphatic filariasis model with quarantine and treatment,†BMC Public Health, vol. 17, p. 265, Mar. 2017.

M. A. Irvine, L. J. Reimer, S. M. Njenga, S. Gunawardena, L. Kelly-Hope, M. Bockarie, and T. D. Hollingsworth, “Modelling strategies to break transmission of lymphatic filariasis - aggregation, adherence and vector competence greatly alter elimination,†Parasites & Vectors, vol. 8, p. 547, Oct. 2015.

P. Jambulingam, S. Subramanian, S. J. de Vlas, C. Vinubala, and W. A. Stolk,“Mathematical modelling of lymphatic filariasis elimination programmes inIndia: required duration of mass drug administration and post-treatment level of infection indicators,†Parasites & Vectors, vol. 9, p. 501, Sept. 2016

Downloads

Published

2022-08-29

Issue

Section

Articles