Analisis Fitur Warna dan Tekstur untuk Metode Deteksi Jalan

Authors

  • Adhi Prahara Universitas Ahmad Dahlan
  • Ahmad Azhari Universitas Ahmad Dahlan

DOI:

https://doi.org/10.26555/jiteki.v2i2.5506

Abstract

Deteksi jalan digunakan untuk mengidentifikasi area jalan pada citra atau frame video. Tantangan dalam mendeteksi jalan diantaranya warna dan tekstur jalan yang beragam serta masalah pencahayaan. Oleh karena itu diperlukan fitur yang sesuai untuk menghadapi permasalahan tersebut. Pada penelitian ini dilakukan analisis fitur warna dan tekstur untuk mendeteksi jalan. Kumpulan 50 sampel jalan diambil untuk diekstrak fitur warna di tiga ruang warna yang berbeda yaitu RGB (Red-Green-Blue), HSV (Hue-Saturation-Value), dan CIE L*a*b* serta diekstrak fitur teksturnya dengan GLCM (Gray Level Co-occurrence Matrix). Fitur-fitur tersebut kemudian dianalisis untuk didapatkan fitur dengan variasi yang rendah dari semua sampel jalan yang digunakan untuk menentukan threshold warna maupun tekstur. Hasil pengujian metode deteksi jalan dari 150 citra uji jalan menggunakan batasan fitur hasil analisis menunjukkan akurasi 90,54%.

Author Biography

Ahmad Azhari, Universitas Ahmad Dahlan

Informatics Department

References

He Y, Wang H, Zhang B. Color-based road detection in urban traffic scenes. IEEE Transactions on Intelligent Transportation Systems. 2004; 5(4): 309–318.

Zhang J, Nagel H.H. Texture-based segmentation of road images. In Intelligent Vehicles ’94 Symposium, Proceedings of the. 1994; 260–265.

Hui G, Jilin L, Yaya L. Road Extracting Based on Texture Analysis. In 16th International Conference on Artificial Reality and Telexistence--Workshops (ICAT’06). 2006; 64–67.

Alvarez J.M, Salzmann M, Barnes N. Learning appearance models for road detection. In 2013 IEEE Intelligent Vehicles Symposium (IV). 2013; 423–429.

Tkalcic M, Tasic J.F. Colour spaces: perceptual, historical and applicational background. In Eurocon. 2003.

Acharya T, Ray A. K. Image Processing - Principles and Applications. Wiley-Interscience. 2005.

Mukhopadhyay J. Image and Video Processing in the Compressed Domain, 1st ed. Chapman & Hall/CRC. 2011.

A Muntasa, IA Sirajudin, MH Purnomo. Appearance global and local structure fusion for face image recognition. TELKOMNIKA (Telecommunication, Computing, Electronics and Control). 2011; 9 (1); 125-132

ITU-R BT.601-7. ITU Recommendation for Studio encoding parameters of digital television for standard 4:3 and wide-screen 16:9 aspect ratios. 2011. Diakses 12 Desember 2016. Tersedia online di https://www.itu.int/dms_pubrec/itu-r/rec/bt/R-REC-BT.601-7-201103-I!!PDF-E.pdf.

Haralick R.M, Shanmugam K, Dinstein I. Textural Features for Image Classification. In IEEE Transactions on Systems, Man and Cybernetics. 1973; SMC-3: 610-621.

Database KITTI untuk evaluasi jalan. Diakses 12 Desember 2016. Tersedia online di http://www.cvlibs.net/datasets/kitti/eval_road.php.

Downloads

Published

2016-12-30

Issue

Section

Articles