Dual Mode MIMO-Beamforming Four Elements Array Antenna for Mobile Robot Communications at 5.6 GHz
DOI:
https://doi.org/10.26555/jiteki.v10i2.28797Keywords:
Antenna, Array, MIMO, Beamforming, Robot communicationsAbstract
Mobile robot communications are essential for robot teamwork. To enable communication between robots, reliable wireless communications must be deployed. Higher performance and capacity of communication are required. Multiple-input multiple-output (MIMO) and beamforming are important wireless communication technologies that use multiple antennas to improve communications performance and capacity. However, these two technologies have different requirements. MIMO requires the antenna element to be independent. While beamforming needs antennas to be coupled and fed by the same source. This paper proposes a dual-mode antenna for mobile robot communications at 5.6 GHz that supports both beamforming and MIMO. A single antenna consists of a planar dipole antenna arranged in a circular configuration. This antenna is then expanded to a four-element array antenna. Both MIMO and beamforming evaluations are performed. In MIMO mode, the BER performance is very similar to a non-correlated MIMO antenna. It is supported by the very low correlation between antennas below 0.01. Low coupling is also achieved below -16.5 dB. In beamforming mode, the proposed antenna achieves more than 8.6 dBi gain and good beam steering capability. It is supported by beam suppression with a 90° phase difference between the front and back direction. The proposed antenna performs well in both the MIMO and beamforming modes.References
D. B. Camarillo, T. M. Krummel, and J. K. Salisbury, “Robotic technology in surgery: Past, present, and future,” Am. J. Surg., vol. 188, no. 4, pp. 2–15, Oct. 2004, doi: 10.1016/J.AMJSURG.2004.08.025.
A. Fishman, C. Paxton, W. Yang, D. Fox, B. Boots, and N. Ratliff, “Collaborative interaction models for optimized human-robot teamwork,” IEEE Int. Conf. Intell. Robot. Syst., pp. 11221–11228, Oct. 2020, doi: 10.1109/IROS45743.2020.9341369.
M. B. Alatise and G. P. Hancke, “A Review on Challenges of Autonomous Mobile Robot and Sensor Fusion Methods,” IEEE Access, vol. 8, pp. 39830–39846, 2020, doi: 10.1109/ACCESS.2020.2975643.
L. Romeo, A. Petitti, R. Marani, and A. Milella, “Internet of Robotic Things in Smart Domains: Applications and Challenges,” Sensors 2020, Vol. 20, Page 3355, vol. 20, no. 12, p. 3355, Jun. 2020, doi: 10.3390/S20123355.
M. Z. Miskin et al., “Electronically integrated, mass-manufactured, microscopic robots,” Nat. 2020 5847822, vol. 584, no. 7822, pp. 557–561, Aug. 2020, doi: 10.1038/s41586-020-2626-9.
M. Gharbia, A. Chang-Richards, Y. Lu, R. Y. Zhong, and H. Li, “Robotic technologies for on-site building construction: A systematic review,” J. Build. Eng., vol. 32, p. 101584, Nov. 2020, doi: 10.1016/J.JOBE.2020.101584.
Z. Makhataeva and H. A. Varol, “Augmented Reality for Robotics: A Review,” Robot. 2020, Vol. 9, Page 21, vol. 9, no. 2, p. 21, Apr. 2020, doi: 10.3390/ROBOTICS9020021.
H. J. Lee et al., “Importance of a 5G Network for Construction Sites: Limitation of WLAN in 3D Sensing Applications.”
A. Zhou et al., “Robotic Millimeter-Wave Wireless Networks,” IEEE/ACM Trans. Netw., vol. 28, no. 4, pp. 1534–1549, Aug. 2020, doi: 10.1109/TNET.2020.2990498.
M. Niihara et al., “A Transportation Routing Method Based on A* Algorithm and Hill Climbing for Swarm Robots in WLAN Environment,” Lect. Notes Networks Syst., vol. 570 LNNS, pp. 361–368, 2023, doi: 10.1007/978-3-031-20029-8_35.
M. A. Qasim, F. Abrar, S. Ahmad, and M. Usman, “AI-Based Smart Robot for Restaurant Serving Applications,” Lect. Notes Data Eng. Commun. Technol., vol. 105, pp. 107–123, 2022, doi: 10.1007/978-3-030-90618-4_5.
Z. Hou, Y. Pan, J. Xiong, Y. Zeng, and C. Shen, “A frequency reconfigurable antenna for intelligent mobile robot,” 2021 13th Int. Conf. Adv. Comput. Intell. ICACI 2021, pp. 107–111, May 2021, doi: 10.1109/ICACI52617.2021.9435896.
A. A. M. Rahman et al., “Triple band frequency tunable polarization insensitive metamaterial absorber for WLAN and 5G applications,” Opt. Mater. (Amst)., vol. 145, p. 114368, Nov. 2023, doi: 10.1016/J.OPTMAT.2023.114368.
R. N. Tiwari, R. Thirumalaiah, V. R. Naidu, G. Sreenivasulu, P. Singh, and S. Rajasekaran, “Compact dual band 4-port MIMO antenna for 5G-sub 6 GHz/N38/N41/N90 and WLAN frequency bands,” AEU - Int. J. Electron. Commun., vol. 171, p. 154919, Nov. 2023, doi: 10.1016/J.AEUE.2023.154919.
X. Yang et al., “An Integrated Tri-Band Antenna System with Large Frequency Ratio for WLAN and WiGig Applications,” IEEE Trans. Ind. Electron., vol. 68, no. 5, pp. 4529–4540, May 2021, doi: 10.1109/TIE.2020.2987289.
P. P. Singh, P. K. Goswami, S. K. Sharma, and G. Goswami, “Frequency reconfigurable multiband antenna for IoT applications in WLAN, Wi-max, and C-band,” Prog. Electromagn. Res. C, vol. 102, pp. 149–162, 2020, doi: 10.2528/PIERC20022503.
A. T. Al-Heety, M. T. Islam, A. H. Rashid, H. N. A. Ali, A. M. Fadil, and F. Arabian, “Performance evaluation of wireless data traffic in mm wave massive MIMO communication,” Indones. J. Electr. Eng. Comput. Sci., vol. 20, no. 3, pp. 1342–1350, 2020, doi: 10.11591/ijeecs.v20.i3.pp1342-1350.
N. Jaglan, S. D. Gupta, and M. S. Sharawi, “18 Element Massive MIMO/Diversity 5G Smartphones Antenna Design for Sub-6 GHz LTE Bands 42/43 Applications,” IEEE Open J. Antennas Propag., vol. 2, pp. 533–545, 2021, doi: 10.1109/OJAP.2021.3074290.
M. S. Khan, A. Iftikhar, R. M. Shubair, A. D. Capobianco, B. D. Braaten, and D. E. Anagnostou, “Eight-Element Compact UWB-MIMO/Diversity Antenna with WLAN Band Rejection for 3G/4G/5G Communications,” IEEE Open J. Antennas Propag., vol. 1, no. 1, pp. 196–206, 2020, doi: 10.1109/OJAP.2020.2991522.
A. Birwal, S. Singh, B. K. Kanaujia, and S. Kumar, “Low-profile 2.4/5.8 GHz MIMO/diversity antenna for WLAN applications,” J. Electromagn. Waves Appl., vol. 34, no. 9, pp. 1283–1299, Jun. 2020, doi: 10.1080/09205071.2020.1757516.
Y. Aslan, A. Roederer, N. J. G. Fonseca, P. Angeletti, and A. Yarovoy, “Orthogonal Versus Zero-Forced Beamforming in Multibeam Antenna Systems: Review and Challenges for Future Wireless Networks,” IEEE J. Microwaves, vol. 1, no. 4, pp. 879–901, Oct. 2021, doi: 10.1109/JMW.2021.3109244.
Z. D. Zaharis, I. P. Gravas, P. I. Lazaridis, T. V. Yioultsis, C. S. Antonopoulos, and T. D. Xenos, “An Effective Modification of Conventional Beamforming Methods Suitable for Realistic Linear Antenna Arrays,” IEEE Trans. Antennas Propag., vol. 68, no. 7, pp. 5269–5279, Jul. 2020, doi: 10.1109/TAP.2020.2977822.
W. Hong et al., “MmWave 5G NR Cellular Handset Prototype Featuring Optically Invisible Beamforming Antenna-on-Display,” IEEE Commun. Mag., vol. 58, no. 8, pp. 54–60, Aug. 2020, doi: 10.1109/MCOM.001.2000115.
L. Rao, M. Pant, L. Malviya, A. Parmar, and S. V. Charhate, “5G beamforming techniques for the coverage of intended directions in modern wireless communication: in-depth review,” Int. J. Microw. Wirel. Technol., vol. 13, no. 10, pp. 1039–1062, Dec. 2021, doi: 10.1017/S1759078720001622.
Y. J. Guo, M. Ansari, and N. J. G. Fonseca, “Circuit Type Multiple Beamforming Networks for Antenna Arrays in 5G and 6G Terrestrial and Non-Terrestrial Networks,” IEEE J. Microwaves, vol. 1, no. 3, pp. 704–722, Jul. 2021, doi: 10.1109/JMW.2021.3072873.
M. N. Ashraf, M. U. Khan, T. Hassan, R. Hussain, and M. S. Sharawi, “Reduction of Correlation Coefficient Using Frequency Selective Surface for Multi-band MIMO Antenna,” 15th Eur. Conf. Antennas Propagation, EuCAP 2021, Mar. 2021, doi: 10.23919/EUCAP51087.2021.9411257.
W. Naktong and A. Ruengwaree, “Four-port rectangular monopole antenna for UWB-MIMO,” Prog. Electromagn. Res. B, vol. 87, pp. 19–38, 2020, doi: 10.2528/PIERB19102902.
X. Mei and K. L. Wu, “Envelope Correlation Coefficient for Multiple MIMO Antennas of Mobile Terminals,” 2020 IEEE Int. Symp. Antennas Propag. North Am. Radio Sci. Meet. IEEECONF 2020 - Proc., pp. 1597–1598, Jul. 2020, doi: 10.1109/IEEECONF35879.2020.9329678.
T. Svantesson, “Correlation and channel capacity of MIMO systems employing multimode antennas,” IEEE Trans. Veh. Technol., vol. 51, no. 6, pp. 1304–1312, Nov. 2002, doi: 10.1109/TVT.2002.804856.
N. Honma and K. Murata, “Correlation in MIMO Antennas,” Electron. 2020, Vol. 9, Page 651, vol. 9, no. 4, p. 651, Apr. 2020, doi: 10.3390/ELECTRONICS9040651.
Y. Liu, X. Yang, Y. Jia, and Y. J. Guo, “A Low Correlation and Mutual Coupling MIMO Antenna,” IEEE Access, vol. 7, pp. 127384–127392, 2019, doi: 10.1109/ACCESS.2019.2939270.
M. S. Sharawi, A. T. Hassan, and M. U. Khan, “Correlation coefficient calculations for MIMO antenna systems: a comparative study,” Int. J. Microw. Wirel. Technol., vol. 9, no. 10, pp. 1991–2004, Dec. 2017, doi: 10.1017/S1759078717000903.
B. J. Niu and Y. J. Cao, “Bandwidth-enhanced four-antenna MIMO system based on SIW cavity,” Electron. Lett., vol. 56, no. 13, pp. 643–645, Jun. 2020, doi: 10.1049/EL.2020.0799.
B. Cheng and Z. Du, “A Wideband Low-Profile Microstrip MIMO Antenna for 5G Mobile Phones,” IEEE Trans. Antennas Propag., vol. 70, no. 2, pp. 1476–1481, Feb. 2022, doi: 10.1109/TAP.2021.3111330.
A. Ahmad, D. you Choi, and S. Ullah, “A compact two elements MIMO antenna for 5G communication,” Sci. Reports 2022 121, vol. 12, no. 1, pp. 1–8, Mar. 2022, doi: 10.1038/s41598-022-07579-5.
N. O. Parchin, Y. I. A. Al-Yasir, H. J. Basherlou, and R. A. Abd-Alhameed, “A closely spaced dual-band MIMO patch antenna with reduced mutual coupling for 4G/5G applications,” Prog. Electromagn. Res. C, vol. 101, pp. 71–80, 2020, doi: 10.2528/PIERC20013001.
I. Elfergani et al., “Low-Profile and Closely Spaced Four-Element MIMO Antenna for Wireless Body Area Networks,” Electron. 2020, Vol. 9, Page 258, vol. 9, no. 2, p. 258, Feb. 2020, doi: 10.3390/ELECTRONICS9020258.
T. Addepalli and V. R. Anitha, “A very compact and closely spaced circular shaped UWB MIMO antenna with improved isolation,” AEU - Int. J. Electron. Commun., vol. 114, p. 153016, Feb. 2020, doi: 10.1016/J.AEUE.2019.153016.
M. Abdullah and S. Koziel, “A novel versatile decoupling structure and expedited inverse-model-based re-design procedure for compact single-and dual-band MIMO antennas,” IEEE Access, vol. 9, pp. 37656–37667, 2021, doi: 10.1109/ACCESS.2021.3063728.
Y. Qin, R. Li, and Y. Cui, “Embeddable structure for reducing mutual coupling in massive MIMO antennas,” IEEE Access, vol. 8, pp. 195102–195112, 2020, doi: 10.1109/ACCESS.2020.3033717.
T. Pei, L. Zhu, J. Wang, and W. Wu, “A low-profile decoupling structure for mutual coupling suppression in mimo patch antenna,” IEEE Trans. Antennas Propag., vol. 69, no. 10, pp. 6145–6153, Oct. 2021, doi: 10.1109/TAP.2021.3098565.
H. H. Tran, N. Hussain, H. C. Park, and N. Nguyen-Trong, “Isolation in Dual-Sense CP MIMO Antennas and Role of Decoupling Structures,” IEEE Antennas Wirel. Propag. Lett., vol. 21, no. 6, pp. 1203–1207, Jun. 2022, doi: 10.1109/LAWP.2022.3161669.
C. Yu et al., “A Super-Wideband and High Isolation MIMO Antenna System Using a Windmill-Shaped Decoupling Structure,” IEEE Access, vol. 8, pp. 115767–115777, 2020, doi: 10.1109/ACCESS.2020.3004396.
A. Iqbal, A. Altaf, M. Abdullah, M. Alibakhshikenari, E. Limiti, and S. Kim, “Modified U-Shaped Resonator as Decoupling Structure in MIMO Antenna,” Electron. 2020, Vol. 9, Page 1321, vol. 9, no. 8, p. 1321, Aug. 2020, doi: 10.3390/ELECTRONICS9081321.
S. Sharma, Mainuddin, B. K. Kanaujia, and M. K. Khandelwal, “Implementation of four-port MIMO diversity microstrip antenna with suppressed mutual coupling and cross-polarized radiations,” Microsyst. Technol., vol. 26, no. 3, pp. 993–1000, Mar. 2020, doi: 10.1007/S00542-019-04574-1/METRICS.
F. Liu, J. Guo, L. Zhao, G. L. Huang, Y. Li, and Y. Yin, “Ceramic Superstrate-Based Decoupling Method for Two Closely Packed Antennas with Cross-Polarization Suppression,” IEEE Trans. Antennas Propag., vol. 69, no. 3, pp. 1751–1756, Mar. 2021, doi: 10.1109/TAP.2020.3016388.
H. Hamlbar Gerami, R. Kazemi, and A. E. Fathy, “Development of a metasurface-based slot antenna for 5G MIMO applications with minimized cross-polarization and stable radiation patterns through mode manipulation,” Sci. Reports 2024 141, vol. 14, no. 1, pp. 1–18, Apr. 2024, doi: 10.1038/s41598-024-58794-1.
B. Feng, T. Luo, T. Zhou, and C. Y. D. Sim, “A dual-polarized antenna with low cross polarization, high gain, and isolation for the fifth-generation array/multiple-input multiple-output communications,” Int. J. RF Microw. Comput. Eng., vol. 31, no. 2, p. e22278, Feb. 2021, doi: 10.1002/MMCE.22278.
Muhsin and R. P. Astuti, “Dual-Cross-Polarized Antenna Decoupling for 43 GHz Planar Massive MIMO in Full Duplex Single Channel Communications,” Int. J. Adv. Comput. Sci. Appl., vol. 10, no. 4, pp. 364–370, 2019, doi: 10.14569/IJACSA.2019.0100444.
M. Muhsin, A. L. Nurlaili, A. Saharani, and I. R. Utami, “Sectoral dual-polarized MIMO antenna for 5G-NR band N77 base station,” Indones. J. Electr. Eng. Comput. Sci., vol. 21, no. 3, pp. 1611–1621, Mar. 2021, doi: 10.11591/ijeecs.v21i3.pp1611-1621.
Z. Zheng, T. Yang, W. Q. Wang, and S. Zhang, “Robust adaptive beamforming via coprime coarray interpolation,” Signal Processing, vol. 169, p. 107382, Apr. 2020, doi: 10.1016/J.SIGPRO.2019.107382.
I. Mallioras, Z. D. Zaharis, P. I. Lazaridis, and S. Pantelopoulos, “A Novel Realistic Approach of Adaptive Beamforming Based on Deep Neural Networks,” IEEE Trans. Antennas Propag., vol. 70, no. 10, pp. 8833–8848, Oct. 2022, doi: 10.1109/TAP.2022.3168708.
F. Sohrabi, Z. Chen, and W. Yu, “Deep Active Learning Approach to Adaptive Beamforming for mmWave Initial Alignment,” IEEE J. Sel. Areas Commun., vol. 39, no. 8, pp. 2347–2360, Aug. 2021, doi: 10.1109/JSAC.2021.3087234.
K. E. Kolodziej, J. P. Doane, B. T. Perry, and J. S. Herd, “Adaptive Beamforming for Multi-Function In-Band Full-Duplex Applications,” IEEE Wirel. Commun., vol. 28, no. 1, pp. 28–35, Feb. 2021, doi: 10.1109/MWC.001.2000203.
X. Pei et al., “RIS-Aided Wireless Communications: Prototyping, Adaptive Beamforming, and Indoor/Outdoor Field Trials,” IEEE Trans. Commun., vol. 69, no. 12, pp. 8627–8640, Dec. 2021, doi: 10.1109/TCOMM.2021.3116151.
C. Wang et al., “Space Phased Array Antenna Developments: A Perspective on Structural Design,” IEEE Aerosp. Electron. Syst. Mag., vol. 35, no. 7, pp. 44–63, Jul. 2020, doi: 10.1109/MAES.2020.2984300.
G. He, X. Gao, L. Sun, and R. Zhang, “A review of multibeam phased array antennas as LEO satellite constellation ground station,” IEEE Access, vol. 9, pp. 147142–147154, 2021, doi: 10.1109/ACCESS.2021.3124318.
A. K. Vallappil, M. K. A. Rahim, B. A. Khawaja, N. A. Murad, and M. G. Mustapha, “Butler Matrix Based Beamforming Networks For Phased Array Antenna Systems: A Comprehensive Review and Future Directions For 5G Applications,” IEEE Access, vol. 9, pp. 3970–3987, 2021, doi: 10.1109/ACCESS.2020.3047696.
G. Yang, Y. Zhang, and S. Zhang, “Wide-Band and Wide-Angle Scanning Phased Array Antenna for Mobile Communication System,” IEEE Open J. Antennas Propag., vol. 2, pp. 203–212, 2021, doi: 10.1109/OJAP.2021.3057062.
G. Yang and S. Zhang, “Dual-Polarized Wide-Angle Scanning Phased Array Antenna for 5G Communication Systems,” IEEE Trans. Antennas Propag., vol. 70, no. 9, pp. 7427–7438, Sep. 2022, doi: 10.1109/TAP.2022.3141188.
H. Al Kassir, Z. D. Zaharis, P. I. Lazaridis, N. V. Kantartzis, T. V. Yioultsis, and T. D. Xenos, “A Review of the State of the Art and Future Challenges of Deep Learning-Based Beamforming,” IEEE Access, vol. 10, pp. 80869–80882, 2022, doi: 10.1109/ACCESS.2022.3195299.
B. Jalal, X. Yang, Q. Liu, T. Long, and T. K. Sarkar, “Fast and Robust Variable-Step-Size LMS Algorithm for Adaptive Beamforming,” IEEE Antennas Wirel. Propag. Lett., vol. 19, no. 7, pp. 1206–1210, Jul. 2020, doi: 10.1109/LAWP.2020.2995244.
E. E. Bahingayi and K. Lee, “Low-Complexity Beamforming Algorithms for IRS-Aided Single-User Massive MIMO mmWave Systems,” IEEE Trans. Wirel. Commun., vol. 21, no. 11, pp. 9200–9211, Nov. 2022, doi: 10.1109/TWC.2022.3174154.
M. Abualhayja’a and M. Hussein, “Comparative Study of Adaptive Beamforming Algorithms for Smart antenna Applications,” ICCSPA 2020 - 4th Int. Conf. Commun. Signal Process. their Appl., vol. 2021-January, Mar. 2021, doi: 10.1109/ICCSPA49915.2021.9385725.
N. Ramli, S. K. Noor, T. Khalifa, and N. H. Abd Rahman, “Design and Performance Analysis of Different Dielectric Substrate based Microstrip Patch Antenna for 5G Applications,” Int. J. Adv. Comput. Sci. Appl., vol. 11, no. 8, pp. 77–83, 2020, doi: 10.14569/IJACSA.2020.0110811.
H. Jafarkhani, “A quasi-orthogonal space-time block code,” IEEE Trans. Commun., vol. 49, no. 1, pp. 1–4, 2001, doi: 10.1109/26.898239.
E. A. Jorswieck and H. Boche, “Channel capacity and capacity-range of beamforming in MIMO wireless systems under correlated fading with covariance feedback,” IEEE Trans. Wirel. Commun., vol. 3, no. 5, pp. 1543–1553, Sep. 2004, doi: 10.1109/TWC.2004.833523.
Muhsin and K. Anwar, “ABBA Dual-Cross-Polarized Antenna Decoupling for 5G 16-Element Planar MIMO at 28 GHz,” 2018 2nd Int. Conf. Telemat. Futur. Gener. Networks, TAFGEN 2018, pp. 1–6, Dec. 2018, doi: 10.1109/TAFGEN.2018.8580475.
M. Muhsin, W. M. Hadiansyah, A. P. Pramita, and R. D. N. Cahyanti, “Planar dipole MIMO array antenna for mobile robot communications at 5.6 GHz,” 2019 4th Int. Conf. Inf. Technol. Inf. Syst. Electr. Eng. ICITISEE 2019, pp. 244–248, Nov. 2019, doi: 10.1109/ICITISEE48480.2019.9003753.
A. A. Glazunov, “Mean effective gain of user equipment antennas in double directional channels,” IEEE Int. Symp. Pers. Indoor Mob. Radio Commun. PIMRC, vol. 1, pp. 432–436, 2004, doi: 10.1109/PIMRC.2004.1370908.
S. Blanch, J. Romeu, and I. Corbella, “Exact representation of antenna system diversity performance from input parameter description,” Electron. Lett., vol. 39, no. 9, pp. 705–707, May 2003, doi: 10.1049/EL:20030495.
M. Muhsin, W. M. Hadiansyah, A. Saharani, I. R. Utami, and P. D. Srihadi, “Planar Dipole Array Antenna Design for Mobile Robot Communications at 5.6 GHz,” J. Phys. Conf. Ser., vol. 1501, no. 1, p. 012008, Mar. 2020, doi: 10.1088/1742-6596/1501/1/012008.
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with JITEKI agree to the following terms:
- Authors retain copyright and grant the journal the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY-SA 4.0) that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
This work is licensed under a Creative Commons Attribution 4.0 International License