Visible Light Communication System Design Using Raspberry Pi4B, LED Array, and MQTT Synchronization Protocol
DOI:
https://doi.org/10.26555/jiteki.v9i1.25431Keywords:
Visible Light Communication, LED, Photodiode, Raspberry Pi, 2x2 LED Array, On-Off Keying, Synchronization Method, BER,Abstract
Visible light communication emerged as the solution to overcome limitations exist in RF-based communication system. Although many research has been done on VLC, there are still a lot room for improvements, especially in the design of the VLC itself. This study discusses a simple visible light communication system design that transmits temperature and humidity information. The system uses Array 2×2 LED configuration to transmit data and photodiode to receive the optical signal. Raspberry Pi is used as the signal processor. The research carried out variations in the color of LED used, variations in the method of synchronization, and variations in the data rate transmission with BER value as the main parameter to be analyzed. The research contribution is to propose a simple visible light communication design that transmit and receive information in reference to room temperature and humidity using Raspberry Pi and DHT-11 sensor, while also implementing two synchronization methods to maximize synchronization in transmission thus minimizing the BER value in higher bit rate. The LED used is blue with an average voltage of 0.0423 V for bit ‘1’ and 0.00448 V for bit ‘0’. The throughput can be achieved are within range 1bps to 10 kbps with BER 0.5 as a threshold. The implementation of the synchronization method decreases the average BER value by 0.0945 with the implementation of transmission calibration synchronization and decreases the average BER value by 0.1221 using the MQTT communication protocol. In conclusion, the design has limitations through the component used in the transmitting and receiving end with BER values relatively high. Further research for system development can be done by implementing Forward Error Correction to minimize errors that occur in the transmission and collaborating with vendors with same research field for the latest components for VLC system design.
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with JITEKI agree to the following terms:
- Authors retain copyright and grant the journal the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY-SA 4.0) that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
This work is licensed under a Creative Commons Attribution 4.0 International License