Deep Learning-Based SOLO Architecture for Re-Identification of Single Persons by Locations
DOI:
https://doi.org/10.26555/jiteki.v8i4.25059Keywords:
Features extraction, Person re-identification, SOLO, Surveillance video, Rank-1Abstract
Analyzing and judging of captured and retrieved images of the targets from the surveillance video cameras for person re-identification have been a herculean task for computer vision that is worth further research. Hence, re-identification of single persons by locations based on single objects by locations (SOLO) model is proposed in this paper. To achieve the re-identification goal, we based the training of the re-identification model on synchronized stochastic gradient descent (SGD). SOLO is capable of exploiting the contextual cues and segmenting individual persons by their motions. The proposed approach consists of the following steps: (1) reformulating the person instance segmentation as: (a) prediction of category and (b) mask generation tasks for each person instance, (2) dividing the input person image into a uniform grids, i.e., G×G grid cells in such a way that a grid cell can predict the category of the semantic and masks of the person instances provided the center of the person falls into the grid cell and (3) conducting person segmentation. Discriminating features of individual persons are obtained by extraction using convolution neural networks. On person re-identification Market-1501 dataset, SOLO model achieved mAP of 84.1% and 93.8% rank-1 identification rate, higher than what is achieved by other comparative algorithms such as PL-Net, SegHAN, Siamese, GoogLeNet, and M3L (IBN-Net50). On person re-identification CUHK03 dataset, SOLO model achieved mAP of 82.1 % and 90.1% rank-1 identification rate, higher than what is achieved by other comparative algorithms such as PL-Net, SegHAN, Siamese, GoogLeNet, and M3L (IBN-Net50). These results show that SOLO model achieves best results for person re-identification, indicating high effectiveness of the model. The research contributions are: (1) Application of synchronized stochastic gradient descent (SGD) to SOLO training for person re-identification and (2) Single objects by locations using semantic category branch and instance mask branch instead of detect-then-segment method, thereby converting person instance segmentation into a solvable problem of single-shot classification.
Downloads
Published
Issue
Section
License
Authors who publish with JITEKI agree to the following terms:
- Authors retain copyright and grant the journal the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY-SA 4.0) that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
This work is licensed under a Creative Commons Attribution 4.0 International License