Autoregressive Integrated Moving Average (ARIMA) Model for Forecasting Indonesian Crude Oil Price
DOI:
https://doi.org/10.26555/jiteki.v9i3.22286Keywords:
ARIMA, ICP, Crude oil, ForecastingAbstract
Crude oil is the main commodity of the global economy because oil is used as an ingredient for many industries globally and is the price base used in the state budget. Indonesian Crude Price (ICP) fluctuates following developments in world crude oil prices. A significant increase in crude oil prices will certainly disrupt the economy. Thus, the movement or fluctuation of ICP is essential for business players in the energy market, especially domestically. Therefore, crude oil price forecasting is needed to assist business people in making decisions related to the energy market. This study aims to find a suitable forecasting model for Indonesian crude oil prices using the Autoregressive Integrated Moving Average (ARIMA) method. The forecasting process used ICP time-series data per month for 50 types of crude oil within five years or 63 months. Based on the experimental results, it was found that the most fit ARIMA models were (0,1,1), (1,1,0), (0,1,0), and (1,2,1). The test results for April to September 2020 have a good and proper interpretation, except the type of BRC oil indicates inaccurate forecasts. The ARIMA error rate is very dependent on the value of the data before it is predicted and external factors, the more unstable the data value every month, the higher the error rate.Downloads
Published
2023-07-31
Issue
Section
Articles
License
Authors who publish with JITEKI agree to the following terms:
- Authors retain copyright and grant the journal the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY-SA 4.0) that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
This work is licensed under a Creative Commons Attribution 4.0 International License