The Artificial Intelligence (AI) Model Canvas Framework and Use Cases
DOI:
https://doi.org/10.26555/jiteki.v8i1.22206Abstract
Artificial Intelligence (AI) has grown increasingly in the past decade. The growth and development bring up several issues for a successful AI project. The AI project requires communication across different domains, like specialists, engineers, data scientists, stakeholders, and ecosystem partners (analytic, storage, labeling, and open-source platforms). It offers numerous vital qualities to give deeper insights into user behavior and give recommendations based on the data. The AI project is hard to define, it requires more than mastery of data, and every enterprise needs guidance and a simple plan on how to use AI. This research creates a wide-view approach of different types of AI Model Canvas for companies that do projects, produce, promote and provide AI technology to organizations. We selected three canvases that represented AI, Machine Learning (ML), and Deep Learning (DL) method. We illustrate and interpret those canvas along with some case studies. We conclude our research by writing the final case report for each use case from the AI model canvas. By filling the one-page Canvas, it will help us explain what AI will provide, how it will interact with humans judgment, and how it will be used to influence decisions, how you will measure success & outcome, and the type of data needed to train, operate, and improve AI. The AI Model Canvas purposed a clear description and differentiation of the roles of stakeholders, customers, and AI strategy. This canvas also can be used in analytical and assembly projects in making new product lines.Downloads
Published
2022-03-20
How to Cite
[1]
A. Nurcahyo, J. Suroso, and G. Wang, “The Artificial Intelligence (AI) Model Canvas Framework and Use Cases”, J. Ilm. Tek. Elektro Komput. Dan Inform, vol. 8, no. 1, pp. 1–16, Mar. 2022.
Issue
Section
Articles
License
Authors who publish with JITEKI agree to the following terms:
- Authors retain copyright and grant the journal the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY-SA 4.0) that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
This work is licensed under a Creative Commons Attribution 4.0 International License