Analysis of Random Forest, Multiple Regression, and Backpropagation Methods in Predicting Apartment Price Index in Indonesia

Authors

  • I NYM Yoga Saputra Telkom University
  • Siti Saadah Telkom University
  • Prasti Eko Yunanto Telkom University

DOI:

https://doi.org/10.26555/jiteki.v7i2.20997

Keywords:

Backpropagation, Multiple Regression Forecasting, Prediction, Predicted Apartment Prices, Random Forest Forecasting

Abstract

This study focuses on predicting the apartment price index in Indonesia using property survey data from Bank Indonesia. In the era of the Covid-19 pandemic, accurately predicting the sale and purchase price of apartments is essential to minimize the impact of losses, thus making apartment prices attractive to predict. The machine learning approach used to predict the apartment price index are the Random Forest method, the Multiple Regression method, and the Backpropagation method. This study aims to determine which method is more effective in predicting small amounts of data accuracy. The data used is apartment price index data from 2012 to 2019 in the JABODEBEK area. The research will produce prediction accuracy that will determine the effectiveness of the application of the method. The Random Forest method with parameters n_estimators=100 and max_features=â€log2†produces an R2 accuracy of 0.977. The Multiple Regression method with a correlation between the selling price and rental price variables is 0.746, and the rental inflation variable is 0.042 produces an R2 accuracy of 0.559. The Backpropagation method with a 1000-4000-1 hidden scheme and 20000 iterations produces an R2 accuracy of 0.996. Therefore, the Backpropagation method is more suitable in this study compared to the other two methods. The Backpropagation method is suitable because it gets almost perfect accuracy, so this method will minimize losses in investing in buying and selling apartments in the Covid-19 pandemic era.

Author Biographies

I NYM Yoga Saputra, Telkom University

I NYM Yoga Saputra is currently pursuing an undergraduate program at Telkom University, Bandung. He majored in Informatics. His research interests include machine learning, prediction and Intelligent Systems.

Siti Saadah, Telkom University

Siti Saadah received the Bachelor and Master degree in Informatics Engineering from Telkom Institute of Technology (now Telkom University), Bandung, Indonesia in 2009 and 2012. Since 2009, she joined Telkom University as a lecturer in School of Computing. She is Teaching Design and Analysis Algorithm, Artificial Intelligence, Theory Authomata at Telkom University. Her research interests include machine learning, financial computing, AI healthcare, prediction and simulation. Scopus ID: 55523371300, Researcher ID: AAD-6187-2021, Publon ID: 4215578.

Prasti Eko Yunanto, Telkom University

Prasti Eko Yunanto received the B.Sc. on Informatics Engineering from Telkom Institute of Technology (now Telkom University), Bandung, Indonesia in 2012, the M.Sc. on Computing from Telkom University, Bandung, in 2015. Since 2019, he joined Telkom University as a lecturer in School of Computing. His research interests include Biometrics Security and Intelligent System. Scopus ID: 57193832286, Researcher ID: AAD-6421-2021, Publon ID: 4216090,  Orcid: https://orcid.org/0000-0003-1967-9749.

References

A. Suryahadi, R. Al Izzati, and D. Suryadarma, “Estimating the Impact of Covid-19 on Poverty in Indonesia*,†Bulletin of Indonesian Economic Studies, vol. 56, no. 2, pp. 175–192, 2020. https://doi.org/10.1080/00074918.2020.1779390

H. Q. Sari and A. Rahman, “Analisis Pengaruh Pandemi Covid 19 Terhadap Emiten Properti (Studi Kasus Emiten Properti Dalam LQ-45),†Jurnal Ekonomi, Manajemen, Bisnis, dan Sosial (EMBISS), vol. 1, no. 3, pp. 250–254, 2021. https://www.embiss.com/index.php/embiss/article/view/34

A. H. Limbong, “Analisis faktor-faktor yang mempengaruhi buying attitude dan buying intention dalam pembelian apartmen†Master Thesis, Universitas Pelita Harapan, 2017. http://repository.uph.edu/3790/

I. L. Mulyahati, “Implementasi Machine Learning Prediksi Harga Sewa Apartemen Menggunakan Algoritma Random Forest Melalui Framework Website Flask Python (Studi Kasus: Apartemen di DKI Jakarta Pada Website mamikos. com),†Undergraduate Thesis, Universitas Islam Indonesia, 2020. https://dspace.uii.ac.id/handle/123456789/23970

M. Čeh, M. Kilibarda, A. Lisec, and B. Bajat, “Estimating the Performance of Random Forest versus Multiple Regression for Predicting Prices of the Apartments,†ISPRS International Journal of Geo-Information, vol. 7, no. 5, p. 168, May 2018. https://doi.org/10.3390/ijgi7050168

H. Tyralis and G. Papacharalampous, “Variable Selection in Time Series Forecasting Using Random Forests,†Algorithms, vol. 10, no. 4, p. 114, Oct. 2017. https://doi.org/10.3390/a10040114

C. Iwendi et al., “COVID-19 patient health prediction using boosted random forest algorithm,†Frontiers in Public Health, vol. 8, Jul. 2020. https://doi.org/10.3389/fpubh.2020.00357

P. J. Moore, T. J. Lyons, and J. Gallacher, “Random forest prediction of Alzheimer’s disease using pairwise selection from time series data,†PLoS ONE, vol. 14, no. 2, Feb. 2019. https://doi.org/10.1371/journal.pone.0211558

Chen, Chuancan, Lulu Hao, and Cong Xu. “Comparative analysis of used car price evaluation models.†AIP Conference Proceedings. vol. 1839, no. 1, AIP Publishing LLC, 2017. https://doi.org/10.1063/1.4982530

R. W. Abidatul Izah, “Prediksi Harga Saham Menggunakan Improved Multiple Linear Regression Untuk Pencegahan Data Outlier,†KINETIK, vol. 2, no.3, pp. 141-150, 2017. https://doi.org/10.22219/kinetik.v2i3.268

Y. Feng and S. Wang, “A forecast for bicycle rental demand based on random forests and multiple linear regression,†2017 IEEE/ACIS 16th International Conference on Computer and Information Science (ICIS), 2017, pp. 101-105. https://doi.org/10.1109/ICIS.2017.7959977

A. Kaushal and A. Shankar, “House Price Prediction Using Multiple Linear Regression,†SSRN Electronic Journal, 2021. https://doi.org/10.2139/ssrn.3833734

D. Huang and Z. Wu, “Forecasting outpatient visits using empirical mode decomposition coupled with backpropagation artificial neural networks optimized by particle swarm optimization,†PLoS ONE, vol. 12, no. 2, Feb. 2017. https://doi.org/10.1371/journal.pone.0172539

A. Wanto and A. P. Windarto, “Analisis Prediksi Indeks Harga Konsumen Berdasarkan Kelompok Kesehatan Dengan Menggunakan Metode Backpropagation,†Sinkron: Jurnal dan Penelitian Teknik Informatika, vol. 2, no. 2, pp. 37-43, 2017. https://www.jurnal.polgan.ac.id/index.php/sinkron/article/view/76

A. Perdana Windarto Program Studi Sistem Informasi and S. A. Tunas Bangsa Pematangsiantar Jln Jenderal Sudirman Blok No, “Implementasi JST Dalam Menentukan Kelayakan Nasabah Pinjaman Kur Pada Bank Mandiri Mikro Serbelawan Dengan Metode Backpropogation,†Jurnal Sains Komputer & Informatika (J-SAKTI), vol. 1, no. 1, 2017. https://doi.org/10.30645/j-sakti.v1i1.25

S. P. Siregar, A. Wanto, S. Tunas, and B. Pematangsiantar, “Analysis Accuracy of Artificial Neural Network Using Backpropagation Algorithm in Predicting Process (Forecasting),†International Journal of Information System & Technology, vol. 1, no. 1, pp. 34–42, 2017. https://doi.org/10.30645/ijistech.v1i1.4

Hong, Jengei, Heeyoul Choi, and Woo-sung Kim. “A house price valuation based on the random forest approach: the mass appraisal of residential property in South Korea.†International Journal of Strategic Property Management 24.3 (2020): 140-152. https://doi.org/10.3846/ijspm.2020.11544

V. W. Siburian and I. E. Mulyana “Prediksi Harga Ponsel Menggunakan Metode Random Forest,†Prosiding Annual Research Seminar 2018, vol. 4, no.1, 2018. http://seminar.ilkom.unsri.ac.id/index.php/ars/article/view/1992

M. Z. Asghar, F. Rahman, F. M. Kundi, and S. Ahmad, “Development of stock market trend prediction system using multiple regression,†Computational and Mathematical Organization Theory, vol. 25, pp. 271–301, 2019. https://doi.org/10.1007/s10588-019-09292-7

A. Guardiola Mouhaffel, C. Martínez Domínguez, B. Arcones, F. Morán Redonda, and R. Díaz Martín, “Using Multiple Regression Analysis Lineal to Predict Occupation Market Work in Occupational Hazard Prevention Services,†International Journal of Applied Engineering Research, vol. 12, no. 3, pp. 283-288, 2017. http://www.ripublication.com/ijaer17/ijaerv12v3_02.pdf

K. T. N. Lestari, M. A. Albar, and R. Afwani, “Penerapan Metode Backpropagation Dalam Memprediksi Jumlah Kunjungan Wisatawan Ke Provinsi Nusa Tenggara Barat (NTB),†Journal of Computer Science and Informatics Engineering (J-Cosine), vol. 3, no. 1, 2019.†https://doi.org/10.29303/jcosine.v3i1.236

R. R. Waliyansyah and N. D. Saputro, “Forecasting New Student Candidates Using the Random Forest Method,†Lontar Komputer: Jurnal Ilmiah Teknologi Informasi, 2020. https://doi.org/10.24843/LKJITI.2020.v11.i01.p05

N. Pal, P. Arora, P. Kohli, D. Sundararaman, and S. S. Palakurthy, “How much is my car worth? A methodology for predicting used cars’ prices using random forest,†Future of Information and Communication Conference, Springer, Cham, 2018. https://doi.org/10.1007/978-3-030-03402-3_28

L. Nilawati and Y. E. Achyani, “Optimasi Metode Particle Swarm Optimization (PSO) Pada Prediksi Penilaian Apartemen,†Paradigma - Jurnal Komputer dan Informatika, 2019. Vol. 21, no. 2, pp. 227-234, 2019. https://doi.org/10.31294/p.v21i2.6159

A. Mulyani, “Analisis Neural Network Struktur Backpropagation Sebagai Metode Peramalan Pada Perhitungan Tingkat Kemiskinan Di Indonesia,†Jurnal Techno Nusa Mandiri, vol. 13, no. 1, pp. 9-14, Mar. 2016. http://ejournal.nusamandiri.ac.id/index.php/techno/article/view/212

Downloads

Published

2021-07-20

How to Cite

[1]
I. N. Y. Saputra, S. Saadah, and P. E. Yunanto, “Analysis of Random Forest, Multiple Regression, and Backpropagation Methods in Predicting Apartment Price Index in Indonesia”, J. Ilm. Tek. Elektro Komput. Dan Inform, vol. 7, no. 2, pp. 238–248, Jul. 2021.

Issue

Section

Articles

Similar Articles

You may also start an advanced similarity search for this article.