Systematic Literature Review: Current Products, Topic, and Implementation of Graph Database

Authors

  • Adhy Rizaldy Universitas Islam Negeri Alauddin Makassar
  • Sirli Fahriah Politeknik Negeri Semarang
  • Nahrun Hartono Universitas Islam Negeri Alauddin Makassar

DOI:

https://doi.org/10.26555/jiteki.v7i1.19007

Keywords:

Graph database, Neo4j, Graph model, NoSQL

Abstract

Planning, developing, and updating software cannot be separated from the role of the database. From various types of databases, graph databases are considered to have various advantages over their predecessor, relational databases. Graph databases then become the latest trend in the software and data science industry, apart from the development of graph theory itself. The proliferation of research on GDB in the last decade raises questions about what topics are associated with GDB, what industries use GDB in its data processing, what the GDB models are, and what types of GDB have been used most frequently by users in the last few years. This article aims to answer these questions through a Literature Review, which is carried out by determining objectives, determining the limits of review coverage, determining inclusion and exclusion criteria for data retrieval, data extraction, and quality assessment. Based on a review of 60 studies, several research topics related to GDB are Semantic Web, Big Data, and Parallel computing. A total of 19 (30%) studies used Neo4j as their database. Apart from Social Networks, the industries that implement GDB the most are the Transportation sector, Scientific Article Networks, and general sectors such as Enterprise Data, Biological data, and History data. This Literature Review concludes that research on the topic of the Graph Database is still developing in the future. This is shown by the breadth of application and the variety of new derivatives of GDB products offered by researchers to address existing problems.

References

C. J. Date, “An Introduction to Database Systems,†Pearson Education India, 1975.

S. Patil, G. Vaswani, and A. Bhatia, “Graph Databases- An Overview,†Int. J. Comput. Sci. Inf. Technol., vol. 5, no. 1, pp. 657–660, 2014.

S. Jouili and V. Vansteenberghe, “An empirical comparison of graph databases,†Proc. - Soc. 2013, pp. 708–715, 2013. https://doi.org/10.1109/SocialCom.2013.106

E. Germán Andrés Pérez and O. S. Pabón, “A comparison of NoSQL graph databases,†2014 9th Comput. Colomb. Conf. 9CCC 2014, pp. 128–131, 2014. https://doi.org/10.1109/ColumbianCC.2014.6955355

R. Kumar Kaliyar, “Graph databases: A survey,†Int. Conf. Comput. Commun. Autom. ICCCA 2015, pp. 785–790, 2015. https://doi.org/10.1109/CCAA.2015.7148480

G. Jaiswal and A. P. Agrawal, “Comparative analysis of Relational and Graph databases,†OSR Journal of Engineering (IOSRJEN), vol. 3, no. 8, pp. 2250-3021, 2013.

M. Besta et al., “Demystifying graph databases: Analysis and taxonomy of data organization, system designs, and graph queries,†arXiv preprint arXiv: 1910.09017, 2019. https://arxiv.org/abs/1910.09017v4

L. Ehrlinger and Wolfram Wöß, “Towards a definition of knowledge graphs,†SEMANTiCS, vol. 48, pp. 1-4, 2016.

I. Polato, R. Ré, A. Goldman, and F. Kon, “A comprehensive view of Hadoop research - A systematic literature review,†J. Netw. Comput. Appl., vol. 46, pp. 1–25, 2014. https://doi.org/10.1016/j.jnca.2014.07.022

M. Buerli and C. Obispo, “The Current State of Graph Databases,†Dep. Comput. Sci. Cal Poly San Luis Obispo, vol. 32, no. 3, pp. 67–83, 2012.

R. McColl, D. Ediger, J. Poovey, D. Campbell, and D. A. Bader, “A performance evaluation of open source graph databases,†PPAA 2014 - Proc. 2014 Work. Parallel Program. Anal. Appl., pp. 11–17, 2014. https://doi.org/10.1145/2567634.2567638

A. Basiri, P. Amirian, and A. Winstanley, “Use of graph databases in tourist navigation application,†Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 8583 LNCS, no. PART 5, pp. 663–677, 2014. https://doi.org/10.1007/978-3-319-09156-3_46

J. Yang and J. Wei, “BR-Index: An Indexing Structure for Subgraph Matching in Very Large Dynamic Graphs,†Sci. Stat. Database Manag. SSDBM 2011. Lect. Notes Comput. Sci., vol. 6809, pp. 322–331, 2011. https://doi.org/10.1007/978-3-642-22351-8_20

G. Campero Durand, D. Broneske, M. Pinnecke, Saake, Gunter, and T. Spatzier, “Best Practices for Developing Graph Database Applications: A Case Study Using Apache Titan,†Master Thesis, University of Magdeburg, 2017.

T. Nguyen and P. Do, “Managing and visualizing citation network using graph database and LDA model,†ACM Int. Conf. Proceeding Ser., vol. 2017-Decem, pp. 100–105, 2017. https://doi.org/10.1145/3155133.3155154

J. Martinez-Gil, R. Stumpner, C. Lettner, M. Pichler, and W. Fragner, “Design and Implementation of a Graph-Based Solution for Tracking Manufacturing Products,†Commun. Comput. Inf. Sci., vol. 1064, pp. 417–423, 2019. https://doi.org/10.1007/978-3-030-30278-8_41

N. Jatana, S. Puri, M. Ahuja, I. Kathuria, and D. Gosain, “A Survey and Comparison of Relational and Non-Relational Database,†Int. J. Eng. Res. Technol., vol. 1, no. 6, pp. 1–5, 2012.

D. Plechawska-Wójcik, Małgorzata, Rykowski, “Comparison of Relational, Document and Graph Databases in the Context of the Web Application Development,†A. Grzech al. (eds.), Inf. Syst. Archit. Technol. Proc. 36th Int. Conf. Inf. Syst. Archit. Technol. – ISAT 2015 – Part I, Adv. Intell. Syst. Comput., vol. 430, pp. V–vi, 2016. https://doi.org/10.1007/978-3-319-28561-0_1

K. Driscoll, From Punched Cards to “Big Dataâ€: A Social History of Database Populism, vol. 1, no. August. 2012.

C. Ma, Data Integration of Legacy ERP System Based on Ontology Learning from SQL Scripts, vol. 1064. 2019. https://doi.org/10.5220/0007740602310237

Z. Shang and J. X. Yu, “Catch the wind: Graph workload balancing on cloud,†2013 IEEE 29th Int. Conf. Data Eng. Brisbane, QLD, Australia, pp. 553–564, 2013. https://doi.org/10.1109/ICDE.2013.6544855

G. Malewicz et al., “Pregel : A System for Large-Scale Graph Processing,†pp. 135–145, 2010. https://doi.org/10.1145/1807167.1807184

Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola, and J. M. Hellerstein, “Distributed GraphLab: A Framework for Machine Learning and Data Mining in the Cloud,†Proc. VLDB Endow., vol. 5, no. 8, pp. 716–727, 2012. https://doi.org/10.14778/2212351.2212354

A. Gutfraind and M. Genkin, “A graph database framework for covert network analysis: An application to the Islamic State network in Europe,†Soc. Networks, vol. 51, pp. 178–188, 2017. https://doi.org/10.1016/j.socnet.2016.10.004

J. Wu and Y. Nakamoto, “RelSeeker: Relationship-based Query Language in a Graph Database for Social Networks,†2019 6th Int. Conf. Soc. Networks Anal. Manag. Secur. SNAMS 2019, pp. 268–273, 2019. https://doi.org/10.1109/SNAMS.2019.8931872

F. Serratosa, A. Solé-Ribalta, and Cortes Xavier, “K-nn Queries in Graph Databases Using M-Trees*,†A. Berciano al. CAIP 2011, Part I, LNCS 6854, pp. 202–210, 2011. https://doi.org/10.1007/978-3-642-23672-3_25

Y. Xia et al., “Explore Efficient Data Organization for Large Scale Graph Analytics and Storage,†Proc. - 2014 IEEE Int. Conf. Big Data, IEEE Big Data 2014, pp. 942–951, 2014. https://doi.org/10.1109/BigData.2014.7004326

D. Aggarwal and K. C. Davis, “Employing graph databases as a standardization model towards addressing heterogeneity,†Proc. - 2016 IEEE 17th Int. Conf. Inf. Reuse Integr. IRI 2016, no. Idc, pp. 198–207, 2016. https://doi.org/10.1109/IRI.2016.33

A. Vazquez-Ingelmo, J. Cruz-Benito, and F. J. García-Penalvo, “Improving the OEEU’s data-driven technological ecosystem’s interoperability with GraphQL,†ACM Int. Conf. Proceeding Ser., vol. Part F1322, 2017. https://doi.org/10.1145/3144826.3145437

J. Stoyanovich, M. Gilbride, and V. Z. Moffitt, “Zooming in on NYC taxi data with Portal,†arXiv, pp. 1–8, 2017. https://arxiv.org/abs/1709.06176v1

G. C. Durand et al., “Exploring large scholarly networks with HERMES,†Adv. Database Technol. - EDBT, Open Proceedings, pp. 650–653, 2018. http://dx.doi.org/10.5441/002/edbt.2018.76

K. L. Berg, T. Seymour and R. Goel, “History of Databases,†International Journal of Management & Information Systems (IJMIS), vol. 17, no. 1, pp. 29-36, 2013. https://doi.org/10.19030/ijmis.v17i1.7587

R. Angles and C. Gutierrez, “Querying RDF data from a graph database perspective,†Lect. Notes Comput. Sci., vol. 3532, no. c, pp. 346–360, 2005. https://doi.org/10.1007/11431053_24

K. Hu and J. Zhu, "A progressive web application on ancient roman empire coins and relevant historical Figs with graph database," vol. 11197 LNCS. Springer International Publishing, 2018. https://doi.org/10.1007/978-3-030-01765-1_26

D. Kim Stephen and H. Kim Ailee, “A Study of Blockchain based on Graph Database for Software Quality Measurement Integrity,†9th Int. Conf. Inf. Commun. Technol. Converg. ICT Converg. Powered by Smart Intell. ICTC 2018, pp. 1457–1460, 2018. https://doi.org/10.1109/ICTC.2018.8539657

Y. Zhu, L. Shi, R. Dai, and G. Liu, “Fast grid splitting detection for n-1 contingency analysis by graph computing,†arXiv, pp. 673–677, 2019. https://doi.org/10.1109/ISGT-Asia.2019.8880879

E. Gyulgyulyan, J. Aligon, F. Ravat, and H. Astsatryan, “Data Quality Alerting Model for Big Data Analytics,†Commun. Comput. Inf. Sci., vol. 1064, pp. 489–500, 2019. https://doi.org/10.1007/978-3-030-30278-8_47

H. Ahuja and R. Sivakumar, “Implementation of FOAF, AIISO and DOAP ontologies for creating an academic community network using semantic frameworks,†Int. J. Electr. Comput. Eng., vol. 9, no. 5, pp. 4302–4310, 2019. https://doi.org/10.11591/ijece.v9i5.pp4302-4310

T. P. Hong and P. Do, “Combining Apache Spark OrientDb to Find the Influence of a Scientific Paper in a Citation Network,†Proc. 2018 10th Int. Conf. Knowl. Syst. Eng. KSE 2018, pp. 113–117, 2018. https://doi.org/10.1109/KSE.2018.8573432

D. Allen et al., “Understanding trolls with efficient analytics of large graphs in Neo4j,†Lect. Notes Informatics (LNI), Proc. - Ser. Gesellschaft fur Inform., pp. 377–396, 2019. https://dx.doi.org/10.18420/btw2019-23

S. Schlicht, “Scale-out evaluation of news feed retrieval algorithms on Neo4j and Titan clusters,†no. April, 2015.

F. Desimoni, S. Ilarri, L. Po, F. Rollo, and R. Trillo-Lado, “Semantic traffic sensor data: The TRAFAIR experience,†Appl. Sci., vol. 10, no. 17, 2020. https://doi.org/10.3390/app10175882

Y. Arfat, R. Mehmood, and A. Albeshri, Parallel Shortest Path Graph Computations of United States Road Network Data on Apache Spark, vol. 224. Springer International Publishing, 2018. https://doi.org/10.1007/978-3-319-94180-6_30

K. Bereta, P. Smeros, and M. Koubarakis, “Representation and querying of valid time of triples in linked geospatial data,†Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 7882 LNCS, pp. 259–274, 2013. https://doi.org/10.1007/978-3-642-38288-8_18

E. Roberto, M. T. de Holanda, A. P. F. de Araujo, and M. Victorino, “Geographic data in a graph oriented database: A study with Neo4j and PostgreSQL,†pp. 1–6, 2017. https://doi.org/10.23919/CISTI.2017.7975999

E. S. Malinverni, B. Naticchia, J. L. Lerma Garcia, A. Gorreja, J. Lopez Uriarte, and F. Di Stefano, “A semantic graph database for the interoperability of 3D GIS data,†Appl. Geomatics, 2020. https://doi.org/10.1007/s12518-020-00334-3

J. J. Miller, “Graph database applications and concepts with Neo4j,†Proc. South. Assoc. Inf. Syst. Conf. Atlanta, GA, USA, vol. 2324, pp. 36, 2013.

A. Ben Ammar, “Query Optimization Techniques in Graph Databases,†Int. J. Database Manag. Syst., vol. 8, no. 4, pp. 01–14, 2016. https://doi.org/10.5121/ijdms.2016.8401

F. Ravat and Y. Zhao, “Metadata Management for Data Lakes,†European Conference on Advances in Databases and Information System, Springer, 2019. https://doi.org/10.1007/978-3-030-30278-8_5

S. Lee, H. Cho, N. Kim, B. Kim, and J. Park, “Managing Cyber Threat Intelligence in a Graph Database: Methods of Analyzing Intrusion Sets, Threat Actors, and Campaigns,†2018 Int. Conf. Platf. Technol. Serv. PlatCon 2018, pp. 1–6, 2018. https://doi.org/10.1109/PlatCon.2018.8472752

C. Sharma, R. Sinha, and P. Leitao, “IASelect: Finding best-fit agent practices in industrial CPS using graph databases,†IEEE Int. Conf. Ind. Informatics, vol. 2019-July, pp. 1558–1563, 2019. https://doi.org/10.1109/INDIN41052.2019.8972272

A. Tian, J. F. Sequeda, and D. P. Miranker, “QODI: Query as context in automatic data integration,†Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 8218 LNCS, no. PART 1, pp. 624–639, 2013. https://doi.org/10.1007/978-3-642-41335-3_39

U. Khurana and A. Deshpande, “Efficient snapshot retrieval over historical graph data,†Proc. - Int. Conf. Data Eng., pp. 997–1008, 2013. https://doi.org/10.1109/ICDE.2013.6544892

D. A. Shibanova and I. V. Stroganov, “Simulation System for Combining Requests of Independent Intelligent Agents to Reduce the Load on the Communication Channel based on a Graph Database using Cars as an Example,†Proc. 2020 IEEE Conf. Russ. Young Res. Electr. Electron. Eng. EIConRus 2020, pp. 77–80, 2020. https://doi.org/10.1109/EIConRus49466.2020.9039128

D. W. Wardani and J. Küng, “Property Hypergraphs as an Attributed Predicate RDF,†vol. 9415, pp. 329–336, 2015. https://doi.org/10.1007/978-3-319-26148-5_21

S. K. Mukhiya, F. Rabbiab, V. K. I. Punax, A. Rutle, and Y. Lamo, “A graphql approach to healthcare information exchange with hl7 fhir,†Procedia Comput. Sci., vol. 160, pp. 338–345, 2019. https://doi.org/10.1016/j.procs.2019.11.082

N. Martínez-Bazan, S. Gómez-Villamor, and F. Escalé-Claveras, “DEX: A high-performance graph database management system,†Proc. - Int. Conf. Data Eng., pp. 124–127, 2011. https://doi.org/10.1109/ICDEW.2011.5767616

S. Bordoloi and B. Kalita, “Designing Graph Database Models from Existing Relational Databases,†Int. J. Comput. Appl., vol. 74, no. 1, pp. 25–31, 2013. https://doi.org/10.5120/12850-9303

S. Fathimabi, R. B. V. Subramanyam, and D. V. L. N. Somayajulu, “MSP: Multiple Sub-Graph Query Processing using Structure-based Graph Partitioning Strategy and Map-Reduce,†J. King Saud Univ. - Comput. Inf. Sci., vol. 31, no. 1, pp. 22–34, 2019. https://doi.org/10.1016/j.jksuci.2016.11.007

A. Vaisman, F. Besteiro, and M. Valverde, “Modelling and Querying Star and Snowflake Warehouses Using Graph Databases,†Commun. Comput. Inf. Sci., vol. 1064, pp. 144–152, 2019. https://doi.org/10.1007/978-3-030-30278-8_18

J. Zou, J. Zhao, B. Lang, and Y. Zhao, “Achieving effective and efficient attributed graph data management using lucene,†ACM Int. Conf. Proceeding Ser., pp. 7–13, 2018. https://doi.org/10.1145/3226116.3226119

A. Llorens-Carrodeguas, C. Cervelló-Pastor, and I. Leyva-Pupo, “A data distribution service in a hierarchical SDN architecture: implementation and evaluation,†Proc. - Int. Conf. Comput. Commun. Networks, ICCCN, vol. 2019-July, 2019. https://doi.org/10.1109/ICCCN.2019.8847035

J. Martinez-Gil et al., "General model for tracking manufacturing products using graph databases," Data-Driven Process Discovery and Analysis, Springer, pp. 86-100, 2018. https://doi.org/10.1007/978-3-030-46633-6_5

T. Chen, C. Yuan, G. Liu, and R. Dai, “Graph based Platform for Electricity Market Study, Education and Training,†IEEE Power Energy Soc. Gen. Meet., vol. 2018-Augus, pp. 1–5, 2018. https://doi.org/10.1109/PESGM.2018.8586243

G. F. Pelap, C. F. Zucker, and F. Gandon, “Semantic models in web based educational system integration,†WEBIST 2018 - Proc. 14th Int. Conf. Web Inf. Syst. Technol., pp. 78–89, 2018. https://doi.org/10.5220/0006940000780089

Downloads

Published

2021-04-15

How to Cite

[1]
A. Rizaldy, S. Fahriah, and N. Hartono, “Systematic Literature Review: Current Products, Topic, and Implementation of Graph Database”, J. Ilm. Tek. Elektro Komput. Dan Inform, vol. 7, no. 1, pp. 43–58, Apr. 2021.

Issue

Section

Articles

Similar Articles

You may also start an advanced similarity search for this article.