Household Power Consumption Forecasting using IoT Smart Home Data
Abstract
Keywords
Full Text:
PDFReferences
S. Sorrell, “Reducing energy demand: A review of issues, challenges and approaches,†Renewable and Sustainable Energy Reviews, vol. 47, pp. 74–82, 2015, doi: 10.1016/j.rser.2015.03.002.
F. Karanfil and Y. Li, “Electricity consumption and economic growth: exploring panel-specific differences,†Energy Policy, vol. 82, pp. 264–277, 2015, doi: 10.1016/j.enpol.2014.12.001.
S. Sarwar, W. Chen, and R. Waheed, “Electricity consumption, oil price and economic growth: Global perspective,†Renewable and Sustainable Energy Reviews, vol. 76, pp. 9–18, 2017, doi: 10.1016/j.rser.2017.03.063.
Z. Mohamed and P. Bodger, “Forecasting Electricity Consumption A comparison of models for New Zealand,†in Electricity Engineers’ Association of New Zealand Annual Conference, 2004 doi: 10.1016/j.rser.2017.03.063.
F. Kaytez, M. C. Taplamacioglu, E. Cam, and F. Hardalac, “Forecasting electricity consumption: A comparison of regression analysis, neural networks and least squares support vector machines,†International Journal of Electrical Power & Energy Systems, vol. 67, pp. 431–438, 2015, doi: 10.1016/j.ijepes.2014.12.036.
A. Veit, C. Goebel, R. Tidke, C. Doblander, and H.-A. Jacobsen, “Household Electricity Demand Forecasting--Benchmarking State-of-the-Art Methods,†in Proceedings of the 5th International Conference on Future Energy Systems, 2014, available at: https://arxiv.org/abs/1404.0200.
H. Guo, Q. Chen, Q. Xia, C. Kang, and X. Zhang, “A monthly electricity consumption forecasting method based on vector error correction model and self-adaptive screening method,†International Journal of Electrical Power and Energy Systems, pp. 427–439, 2018, doi: 10.1016/j.ijepes.2017.09.011.
A. Hussain, M. Rahman, and J. A. Memon, “Forecasting electricity consumption in Pakistan: The way forward,†Energy Policy, no. 90, pp. 73–80, 2016, doi: 10.1016/j.enpol.2015.11.028.
F. L. Quilumba, W.-J. Lee, H. Huang, D. Y. Wang, and R. L. Szabados, “Using smart meter data to improve the accuracy of intraday load forecasting considering customer behavior similarities,†IEEE Transactions on Smart Grid, vol. 6, no. 2, pp. 911–918, 2015, doi: 10.1109/TSG.2014.2364233.
J. Kwac, J. Flora, and R. Rajagopal, “Household energy consumption segmentation using hourly data,†IEEE Transactions on Smart Grid, vol. 5, no. 1, pp. 420–430, 2014, doi: 10.1109/TSG.2013.2278477.
S. Haben, C. Singleton, and P. Grindrod, “Analysis and clustering of residential customers energy behavioral demand using smart meter data,†IEEE transactions on smart grid, vol. 7, no. 1, pp. 136–144, 2016, doi: 10.1109/TSG.2015.2409786.
T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,†in Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 785–794, 2016, available at: https://arxiv.org/abs/1603.02754.
Kaggle, “Smart Home Dataset with Weather Information.â€, available at: Google.
Python, “Python Panda Dataframe.â€, available at: Google.
J. H. Friedman, “Greedy function approximation: A gradient boosting machine,†Annals of Statistics, pp. 1189–1232, 2001, available at : Google Scholar.
DOI: http://dx.doi.org/10.26555/jiteki.v5i1.13184
Refbacks
- There are currently no refbacks.
Copyright (c) 2019 Universitas Ahmad Dahlan
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
About the Journal | Journal Policies | Author | Information |
Organized by Electrical Engineering Department - Universitas Ahmad Dahlan
Published by Universitas Ahmad Dahlan
Website: http://journal.uad.ac.id/index.php/jiteki
Email 1: jiteki@ee.uad.ac.id