In-vitro studies on antioxidant and antidiabetic potential of Sesoot (Garcinia picrorrhiza Miq.) fruit ethanolic extract from Indonesia

Authors

  • Sri Utami Faculty of Medicine, YARSI University
  • Sonny Pamuji Laksono Faculty of Medicine, YARSI University
  • Qomariyah Romadhiyani Sachrowardi Faculty of Medicine, YARSI University
  • Dewi Nurul Mustaqimah Faculty of Medicine, YARSI University
  • Susi Endrini Faculty of Medicine, YARSI University
  • Ndaru Andri Damayanti Faculty of Medicine, YARSI University
  • Said Nafik Directorate General of Intellectual Property, Ministry of Law and Human Rights, Jl. H.R. Rasuna Said, Kuningan, Jakarta Selatan. Indonesia.
  • Betharie Cendera Arrahmani Faculty of Business and Engineering, University of Applied Sciences Würzburg-Schweinfurt, Ignaz-Schön Str 11, 97421 Schweinfurt, Germany.
  • Hanna Sari Widya Kusuma Aretha Medika Utama, Biomolecular and Biomedical Research Center
  • Wahyu Widowati Faculty of Medicine, Maranatha Christian University

DOI:

https://doi.org/10.12928/pharmaciana.v11i2.20110

Keywords:

antidiabetic, antioxidant, Garcinia picrorrhiza, xanthone

Abstract

Diabetes mellitus (DM) is a disease that can be identified by high levels of blood glucose. Garcinia plants have been widely used for many traditional medicines as antioxidant, anticancer, antidiabetics, and antiinflammation. The antioxidant and antidiabetic activities of (Garcinia picrorrhiza Miq.) or sesoot fruit extract were evaluated in this study and compared with xanthone. The antioxidant and antidiabetic of ethanolic ripe sesoot (G. picrorrhiza Miq.) fruit extract (GpKar) was evaluated by (ABTS) reducing activity, α-glucosidase, β-glucosidase, and α-amylase inhibitor activity. GpKar showed higher ABTS-reducing activity (IC50 = 49.30 µg/mL) than xanthone (IC50 = 404.30 µg/mL). GpKar showed IC50 = 109.32 µg/mL for α-glucosidase inhibitory activity, while xanthones had a better activity (IC50 = 33.97 µg/mL). GpKar also showed lower α-amylase inhibitory activity and  β-glucosidase (IC50 = 126.01 and 9432.09 µg/mL) compared to xanthone (IC50 = 44.32 and 405.03 µg/mL, respectively). The compounds of GpKar are proven to have antioxidant and antidiabetic activities. Therefore, it will be industrially relevant to develop a natural medicine for decreasing DM risk, thus evaluating the antioxidant and antidiabetic effect of G. picrorrhiza by a pre-clinic study is needed.

References

Abid, S., & Bnouham, A. B. and M. (2016). Natural alpha-glucosidase inhibitors: therapeutic implication and structure- activity relation ship. Letters in Drug Design & Discovery. https://doi.org/http://dx.doi.org/10.2174/1570180812666150918193508

Aisha, A., Abu-Salah, K., Ismail, Z., & Majid, A. (2013). Determination of total xanthones in Garcinia mangostana fruit rind extracts by ultraviolet (UV) spectrophotometry. Journal of Medicinal Plants Research, 7, 29–35

Aizat, W. M., Jamil, I. N., Ahmad-Hashim, F. H., & Noor, N. M. (2019). Recent updates on metabolite composition and medicinal benefits of mangosteen plant. PeerJ, 7, e6324–e6324. https://doi.org/10.7717/peerj.6324

Association, A. D. (2013). Diagnosis and classification of diabetes mellitus. Diabetes Care, 36 Suppl 1(Suppl 1), S67-74. https://doi.org/10.2337/dc13-S067

Ayepola, O. R., Brooks, N. L., & Oguntibeju, O. O. (2014). Oxidative stress and diabetic complications: the role of antioxidant vitamins and flavonoids. Antioxidant-Antidiabetic Agents and Human Health, 923–931

Espirito Santo, B. L. S. do, Santana, L. F., Kato Junior, W. H., de Araújo, F. de O., Bogo, D., Freitas, K. de C., … Bastos, P. R. H. de O. (2020). Medicinal potential of garcinia species and their compounds. Molecules (Basel, Switzerland), 25(19), 1–30. https://doi.org/10.3390/molecules25194513

Ewenighi, C., Dimkpa, U., Onyeanusi, J., Onoh, L., Onoh, G., & Ezugwu, U. (2015). Estimation of glucose level and body weight in Alloxan Induced Diabetic Rat treated with Aqueous extract of Garcinia Kola Seed. Ulutas Medical Journal, 1, 26–30

Gondokesumo, M. E., Kusuma, H., & Widowati, W. (2017). $α$-/$β$-Glucosidase and $α$-Amylase Inhibitory activities of Roselle (Hibiscus sabdariffa L.) ethanol extract

Gondokesumo, M. E., Pardjianto, B., Sumitro, S. B., & Widowati, W. (2019). Xanthones analysis and antioxidant activity analysis (Applying ESR) of six different maturity levels of Mangosteen rind extract (Garcinia mangostana Linn.). Pharmacognosy Journal, 11(2)

Gutierrez-Orozco, F., & Failla, M. L. (2013). Biological activities and bioavailability of mangosteen xanthones: a critical review of the current evidence. Nutrients, 5(8), 3163–3183. https://doi.org/10.3390/nu5083163

Hassan, A., Hawa, S., Fry, J. R., & Abu Bakar, M. F. (2013). Phytochemicals content, antioxidant activity and acetylcholinesterase inhibition properties of indigenous Garcinia parvifolia fruit. BioMed Research International, 2013, 138950. https://doi.org/10.1155/2013/138950

Husen, S. A., Winarni, D., Khaleyla, F., Kalqutny, S. H., & Ansori, A. N. M. (2017). Activity assay of mangosteen (Garcinia mangostana L.) pericarp extract for decreasing fasting blood cholesterol level and lipid peroxidation in type-2 diabetic mice. In AIP Conference Proceedings (Vol. 1888, p. 20026). AIP Publishing LLC

Kumar, M., Pratap, V., Nigam, A., Sinha, B., Singh, M., & Gour, J. (2021). Plants as a source of potential antioxidants and their effective nanoformulations. Journal of Scientific Research, 65, 57–72. https://doi.org/10.37398/JSR.2021.650308

Kumar, S., Narwal, S., Kumar, V., & Prakash, O. (2011). α-glucosidase inhibitors from plants: A natural approach to treat diabetes. Pharmacognosy Reviews, 5(9), 19–29. https://doi.org/10.4103/0973-7847.79096

Kureshi, A., Mirgal, A., Salvi, S., Kumari, P., Singh, R., & Kumar, S. (2020). Antioxidant activities and phenolics contents of garcinia talbotii fruit rind. Research Journal of Medicinal Plants, 14, 104–110. https://doi.org/10.3923/rjmp.2020.104.110

Li, Y.-L., Li, Q.-X., Liu, R.-J., & Shen, X.-Q. (2018). Chinese Medicine Amygdalin and β-Glucosidase Combined with Antibody Enzymatic Prodrug System As A Feasible Antitumor Therapy. Chinese Journal of Integrative Medicine, 24(3), 237–240. https://doi.org/10.1007/s11655-015-2154-x

Lordan, S., Smyth, T. J., Soler-Vila, A., Stanton, C., & Ross, R. P. (2013). The α-amylase and α-glucosidase inhibitory effects of Irish seaweed extracts. Food Chemistry, 141(3), 2170–2176. https://doi.org/10.1016/j.foodchem.2013.04.123

Manaharan, T., Palanisamy, U. D., & Ming, C. H. (2012). Tropical plant extracts as potential antihyperglycemic agents. Molecules (Basel, Switzerland), 17(5), 5915–5923. https://doi.org/10.3390/molecules17055915

Mohammad, N. A., Abang Zaidel, D. N., Muhamad, I. I., Abdul Hamid, M., Yaakob, H., & Mohd Jusoh, Y. M. (2019). Optimization of the antioxidant-rich xanthone extract from mangosteen (Garcinia mangostana L.) pericarp via microwave-assisted extraction. Heliyon, 5(10), e02571. https://doi.org/https://doi.org/10.1016/j.heliyon.2019.e02571

Mohan, S., Syam, S., Abdelwahab, S. I., & Thangavel, N. (2018). An anti-inflammatory molecular mechanism of action of α-mangostin, the major xanthone from the pericarp of Garcinia mangostana: an in silico, in vitro and in vivo approach. Food & Function, 9(7), 3860–3871. https://doi.org/10.1039/c8fo00439k

More, G. K., & Makola, R. T. (2020). In-vitro analysis of free radical scavenging activities and suppression of LPS-induced ROS production in macrophage cells by Solanum sisymbriifolium extracts. Scientific Reports, 10(1), 6493. https://doi.org/10.1038/s41598-020-63491-w

Murthy, H. N., Dandin, V. S., Dalawai, D., Park, S.-Y., & Paek, K.-Y. (2019). Bioactive compounds from Garcinia fruits of high economic value for food and health. Bioactive Molecules in Food, Reference Series in Phytochemistry; Merillon, JM, Ramawat, KG, Eds, 1–27

Negi, J. S., Bisht, V. K., Singh, P., Rawat, M. S. M., & Joshi, G. P. (2013). Naturally occurring xanthones: chemistry and biology. Journal of Applied Chemistry, 2013, 621459. https://doi.org/10.1155/2013/621459

Nisha, J. (2017). Molecular Docking Analysis of Novel Alpha-Glucosidase enzyme Inhibitors from Siddha Formulation Pungampoo Chooranam using Computer aided drug discovery. International Journal of Current Research In Chemistry And Pharmaceutical Sciences, 4(10), 18–26

Pasupuleti, V. R., Arigela, C. S., Gan, S. H., Salam, S. K. N., Krishnan, K. T., Rahman, N. A., & Jeffree, M. S. (2020). A review on oxidative stress, diabetic complications, and the roles of honey polyphenols. Oxidative Medicine and Cellular Longevity, 2020, 8878172. https://doi.org/10.1155/2020/8878172

Abid, S., & Bnouham, A. B. and M. (2016). Natural alpha-glucosidase inhibitors: therapeutic implication and structure- activity relation ship. Letters in Drug Design & Discovery. https://doi.org/http://dx.doi.org/10.2174/1570180812666150918193508

Aisha, A., Abu-Salah, K., Ismail, Z., & Majid, A. (2013). Determination of total xanthones in Garcinia mangostana fruit rind extracts by ultraviolet (UV) spectrophotometry. Journal of Medicinal Plants Research, 7, 29–35

Aizat, W. M., Jamil, I. N., Ahmad-Hashim, F. H., & Noor, N. M. (2019). Recent updates on metabolite composition and medicinal benefits of mangosteen plant. PeerJ, 7, e6324–e6324. https://doi.org/10.7717/peerj.6324

Association, A. D. (2013). Diagnosis and classification of diabetes mellitus. Diabetes Care, 36 Suppl 1(Suppl 1), S67-74. https://doi.org/10.2337/dc13-S067

Ayepola, O. R., Brooks, N. L., & Oguntibeju, O. O. (2014). Oxidative stress and diabetic complications: the role of antioxidant vitamins and flavonoids. Antioxidant-Antidiabetic Agents and Human Health, 923–931

Espirito Santo, B. L. S. do, Santana, L. F., Kato Junior, W. H., de Araújo, F. de O., Bogo, D., Freitas, K. de C., … Bastos, P. R. H. de O. (2020). Medicinal potential of garcinia species and their compounds. Molecules (Basel, Switzerland), 25(19), 1–30. https://doi.org/10.3390/molecules25194513

Ewenighi, C., Dimkpa, U., Onyeanusi, J., Onoh, L., Onoh, G., & Ezugwu, U. (2015). Estimation of glucose level and body weight in Alloxan Induced Diabetic Rat treated with Aqueous extract of Garcinia Kola Seed. Ulutas Medical Journal, 1, 26–30

Gondokesumo, M. E., Kusuma, H., & Widowati, W. (2017). $α$-/$β$-Glucosidase and $α$-Amylase Inhibitory activities of Roselle (Hibiscus sabdariffa L.) ethanol extract

Gondokesumo, M. E., Pardjianto, B., Sumitro, S. B., & Widowati, W. (2019). Xanthones analysis and antioxidant activity analysis (Applying ESR) of six different maturity levels of Mangosteen rind extract (Garcinia mangostana Linn.). Pharmacognosy Journal, 11(2)

Gutierrez-Orozco, F., & Failla, M. L. (2013). Biological activities and bioavailability of mangosteen xanthones: a critical review of the current evidence. Nutrients, 5(8), 3163–3183. https://doi.org/10.3390/nu5083163

Hassan, A., Hawa, S., Fry, J. R., & Abu Bakar, M. F. (2013). Phytochemicals content, antioxidant activity and acetylcholinesterase inhibition properties of indigenous Garcinia parvifolia fruit. BioMed Research International, 2013, 138950. https://doi.org/10.1155/2013/138950

Husen, S. A., Winarni, D., Khaleyla, F., Kalqutny, S. H., & Ansori, A. N. M. (2017). Activity assay of mangosteen (Garcinia mangostana L.) pericarp extract for decreasing fasting blood cholesterol level and lipid peroxidation in type-2 diabetic mice. In AIP Conference Proceedings (Vol. 1888, p. 20026). AIP Publishing LLC

Kumar, M., Pratap, V., Nigam, A., Sinha, B., Singh, M., & Gour, J. (2021). Plants as a source of potential antioxidants and their effective nanoformulations. Journal of Scientific Research, 65, 57–72. https://doi.org/10.37398/JSR.2021.650308

Kumar, S., Narwal, S., Kumar, V., & Prakash, O. (2011). α-glucosidase inhibitors from plants: A natural approach to treat diabetes. Pharmacognosy Reviews, 5(9), 19–29. https://doi.org/10.4103/0973-7847.79096

Kureshi, A., Mirgal, A., Salvi, S., Kumari, P., Singh, R., & Kumar, S. (2020). Antioxidant activities and phenolics contents of garcinia talbotii fruit rind. Research Journal of Medicinal Plants, 14, 104–110. https://doi.org/10.3923/rjmp.2020.104.110

Li, Y.-L., Li, Q.-X., Liu, R.-J., & Shen, X.-Q. (2018). Chinese Medicine Amygdalin and β-Glucosidase Combined with Antibody Enzymatic Prodrug System As A Feasible Antitumor Therapy. Chinese Journal of Integrative Medicine, 24(3), 237–240. https://doi.org/10.1007/s11655-015-2154-x

Lordan, S., Smyth, T. J., Soler-Vila, A., Stanton, C., & Ross, R. P. (2013). The α-amylase and α-glucosidase inhibitory effects of Irish seaweed extracts. Food Chemistry, 141(3), 2170–2176. https://doi.org/10.1016/j.foodchem.2013.04.123

Manaharan, T., Palanisamy, U. D., & Ming, C. H. (2012). Tropical plant extracts as potential antihyperglycemic agents. Molecules (Basel, Switzerland), 17(5), 5915–5923. https://doi.org/10.3390/molecules17055915

Mohammad, N. A., Abang Zaidel, D. N., Muhamad, I. I., Abdul Hamid, M., Yaakob, H., & Mohd Jusoh, Y. M. (2019). Optimization of the antioxidant-rich xanthone extract from mangosteen (Garcinia mangostana L.) pericarp via microwave-assisted extraction. Heliyon, 5(10), e02571. https://doi.org/https://doi.org/10.1016/j.heliyon.2019.e02571

Mohan, S., Syam, S., Abdelwahab, S. I., & Thangavel, N. (2018). An anti-inflammatory molecular mechanism of action of α-mangostin, the major xanthone from the pericarp of Garcinia mangostana: an in silico, in vitro and in vivo approach. Food & Function, 9(7), 3860–3871. https://doi.org/10.1039/c8fo00439k

More, G. K., & Makola, R. T. (2020). In-vitro analysis of free radical scavenging activities and suppression of LPS-induced ROS production in macrophage cells by Solanum sisymbriifolium extracts. Scientific Reports, 10(1), 6493. https://doi.org/10.1038/s41598-020-63491-w

Murthy, H. N., Dandin, V. S., Dalawai, D., Park, S.-Y., & Paek, K.-Y. (2019). Bioactive compounds from Garcinia fruits of high economic value for food and health. Bioactive Molecules in Food, Reference Series in Phytochemistry; Merillon, JM, Ramawat, KG, Eds, 1–27

Negi, J. S., Bisht, V. K., Singh, P., Rawat, M. S. M., & Joshi, G. P. (2013). Naturally occurring xanthones: chemistry and biology. Journal of Applied Chemistry, 2013, 621459. https://doi.org/10.1155/2013/621459

Nisha, J. (2017). Molecular Docking Analysis of Novel Alpha-Glucosidase enzyme Inhibitors from Siddha Formulation Pungampoo Chooranam using Computer aided drug discovery. International Journal of Current Research In Chemistry And Pharmaceutical Sciences, 4(10), 18–26

Pasupuleti, V. R., Arigela, C. S., Gan, S. H., Salam, S. K. N., Krishnan, K. T., Rahman, N. A., & Jeffree, M. S. (2020). A review on oxidative stress, diabetic complications, and the roles of honey polyphenols. Oxidative Medicine and Cellular Longevity, 2020, 8878172. https://doi.org/10.1155/2020/8878172

Prahastuti, S., Hidayat, M., Hasiana, S. T., Widowati, W., Widodo, W. S., Handayani, R. A. S., … Kusuma, H. S. W. (2020). The ethanol extract of the bastard cedar (Guazuma ulmifolia L.) as antioxidants. Pharmaciana; Vol 10, No 1 (2020), 77-88 http://dx.doi.org/10.12928/pharmaciana.v10i1.13636

Putri, I. P. (2015). Effectivity of xanthone of mangosteen (Garcinia mangostana L.) rind as anticancer. Jurnal Majority, 4(1)

Riza Marjoni, M., & A, Z. (2017). Antioxidant activity of methanol extract/fractions of senggani leaves (Melastoma candidum D. Don). Pharmaceutica Analytica Acta, 8. https://doi.org/10.4172/2153-2435.1000557

Rusmana, D., Wahyudianingsih, R., Elisabeth, M., Balqis, B., Maesaroh, M., & Widowati, W. (2017). Antioxidant activity of Phyllanthus niruri extract, rutin and quercetin. The Indonesian Biomedical Journal, 9(2), 84–90

Ryu, H. W., Cho, J. K., Curtis-Long, M. J., Yuk, H. J., Kim, Y. S., Jung, S., … Park, K. H. (2011). α-Glucosidase inhibition and antihyperglycemic activity of prenylated xanthones from Garcinia mangostana. Phytochemistry, 72(17), 2148–2154

Suttirak, W., & Manurakchinakorn, S. (2014). In vitro antioxidant properties of mangosteen peel extract. Journal of Food Science and Technology, 51(12), 3546–3558

Taher, M., Zakaria, T. M. F. S. T., Susanti, D., & Zakaria, Z. A. (2016). Hypoglycaemic activity of ethanolic extract of Garcinia mangostana Linn. in normoglycaemic and streptozotocin-induced diabetic rats. BMC Complementary and Alternative Medicine, 16(1), 1–12

Thamizharasan, S., & Umamaheswari, S, R. H. (2016). ɑ - Amylase and ɑ - Glucosidase Activity of Mimosa. Paripex - Indian Journal of Research, (July), 223–224

Tjahjani, S., & Widowati, W. (2013). The potency of xanthones as antioxidant and antimalarial, and their synergism with artemisinin in vitro. Journal of the Indonesian Medical Association, 63

Utami, S., Adityaningsari, P., Sosiawan, I., Endrini, S., Sachrowardi, Q. R., Laksono, S. P., … Widowati, W. (2017). Antioxidants and anticholinesterase activities of the characterized ethanolic of ripe sesoot (Garcinia picrorrhiza Miq.) fruit extract (GpKar) and xanthone. Majalah Obat Tradisional, 22(3), 160. https://doi.org/10.22146/mot.31548

Utami, S., Endrini, S., Nafik, S., Lestari, I. M. T., Anindya, D., Bakar, E. A., … Arumwardana, S. (2019). In vitro antioxidant and anti-obesity activities of Freeze-dried Canarium sp., Averrhoa bilimbi L. and Malus domestica. The Indonesian Biomedical Journal, 11(3), 320–326.

Widowati, W., Fauziah, N., Herdiman, H., Afni, M., Afifah, E., Kusuma, H. S. W., … Rihibiha, D. D. (2016). Antioxidant and anti aging assays of Oryza sativa extracts, vanillin and coumaric acid. Journal of Natural Remedies, 16(3), 88–99. https://doi.org/10.18311/jnr/2016/7220

Widowati, W., Maesaroh, M., Fauziah, N., pande putu, E., & Sandra, F. (2015). Free radical Scavenging and Alpha/Beta-glucosidases inhibitory activities of rambutan (Nephelium lappaceum L.) Peel extract. The Indonesian Biomedical Journal, 7, 157. https://doi.org/10.18585/inabj.v7i3.180

Widowati, W., Wargasetia, T., Afifah, E., Mozef, T., Kusuma, H., Nufus, H., … Rizal, R. (2018). Antioxidant and antidiabetic potential of Curcuma longa and its compounds. Asian Journal of Agriculture and Biology, 6, 149–161.

Xiao, F., Xu, T., Lu, B., & Liu, R. (2020). Guidelines for antioxidant assays for food components. Food Frontiers, 1(1), 60–69

Yaribeygi, H., Atkin, S. L., & Sahebkar, A. (2019). A review of the molecular mechanisms of hyperglycemiaâ€induced free radical generation leading to oxidative stress. Journal of Cellular Physiology, 234(2), 1300–1312

Zhou, X., Huang, Z., Yang, H., Jiang, Y., Wei, W., Li, Q., … Liu, J. (2017). β-Glucosidase inhibition sensitizes breast cancer to chemotherapy. Biomedicine & Pharmacotherapy, 91, 504–509

Downloads

Published

2021-07-30

Issue

Section

Biology Pharmacy