Implementation of Machine Learning and Deep Learning Models Based on Structural MRI for Identification Autism Spectrum Disorder

Dimas Chaerul Ekty Saputra, Yusuf Maulana, Thinzar Aung Win, Raksmey Phann, Wahyu Caesarendra


Autism spectrum disorder (ASD) is a developmental disability resulting from neurological disparities. People with ASD frequently struggle with communication and social interaction, as well as limited or repetitive interests or behaviors. People with ASD may also have unique learning, movement, and attention styles. ASD sufferers can be interpreted as 1 in every 100 individuals in the globe having ASD. Abilities and requirements of autistic individuals vary and may change over time. Some autistic individuals are able to live independently, while others have severe disabilities and require lifelong care and support. Autism frequently interferes with educational and employment opportunities. Additionally, the demands placed on families providing care and assistance can be substantial. Important determinants of the quality of life for persons with autism are the attitudes of the community and the level of support provided by local and national authorities. Autism is frequently not diagnosed until adolescence, despite the fact that autistic traits are detectable in early infancy. This study will discuss the identification of Autism Spectrum Disorders using Magnetic Resonance Imaging (MRI). MRI images of ASD patients and MRI images of patients without ASD were compared. By employing multiple machine learning and deep learning techniques, such as random forests, support vector machines, and convolutional neural networks, the random forest method achieves the utmost accuracy with 100% using confusion matrix. Therefore, this technique is able to optimally identify ASD through MRI.


Autism Spectrum Disorder; Machine Learning; Deep Learning; Random Forest; Support Vector Machine; Convolutional Neural Network

Full Text:




  • There are currently no refbacks.

Copyright (c) 2023 Dimas Chaerul Ekty Saputra, Yusuf Maulana

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

About the JournalJournal PoliciesAuthor Information

Jurnal Ilmiah Teknik Elektro Komputer dan Informatika
ISSN 2338-3070 (print) | 2338-3062 (online)
Organized by Electrical Engineering Department - Universitas Ahmad Dahlan
Published by Universitas Ahmad Dahlan
Email 1:
Email 2:
Office Address: Kantor Program Studi Teknik Elektro, Lantai 6 Sayap Barat, Kampus 4 UAD, Jl. Ringroad Selatan, Tamanan, Kec. Banguntapan, Bantul, Daerah Istimewa Yogyakarta 55191, Indonesia