Basketball Activity Recognition Using Supervised Machine Learning Implemented on Tizen OS Smartwatch
DOI:
https://doi.org/10.26555/jiteki.v8i3.23668Keywords:
Smartwatch, Basketball Activity Recognition, Machine Learning, Wearable DeviceAbstract
Basketball Activity Recognition (BAR) in sports teams, especially in basketball, to make statistical analysis of player activity data is currently a very important thing. BAR is one part of sports science that recognizes the movement of players in each activity, such as dribbling, passing, etc. Sport science in the sports business is used as one of the factors of coaches and management to determine strategy, starter line-up, check the condition of players after injury, etc. the current technology to recognize player activity only depends on the object detection method of players' through video recordings of players is considered lacking because it only sees the perspective of the coach to reduce players as starter line-up and there is no logical calculation of why players are not installed as starter line-up. One method for recognizing player activity is using a wearable device that has an accelerometer and gyroscope sensor with high accuracy. The values from those sensors will be classified and recognize their activity, i.e., Dribbling, Passing, and Shooting. Smartwatch is one of those wearable devices that meet those criteria. For the activity classification process, the use of the K-NN classification method is the most appropriate because it has a low computational level that is in accordance with the smartwatch specifications. The results of the classification using accelerometer sensor data and gyroscopes with K-NN as an activity recognition method have an accuracy of 81.62%, and player activity recognition applications using accelerometer and gyroscope sensors can also record the results of player movements for further analysis by management and coaches. This is the advantage of this BAR application compared to the recognition of player activity using object detection on video recordings.Downloads
Published
2022-11-08
How to Cite
Asmara, R. A., Hendrawan, N. D., Handayani, A. N., & Arai, K. (2022). Basketball Activity Recognition Using Supervised Machine Learning Implemented on Tizen OS Smartwatch. Jurnal Ilmiah Teknik Elektro Komputer Dan Informatika, 8(3), 447–462. https://doi.org/10.26555/jiteki.v8i3.23668
Issue
Section
Articles
License
Authors who publish with JITEKI agree to the following terms:
- Authors retain copyright and grant the journal the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY-SA 4.0) that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
This work is licensed under a Creative Commons Attribution 4.0 International License