An Improved DC Motor Position Control Using Differential Evolution Based Structure Specified H∞ Robust Controller
DOI:
https://doi.org/10.26555/jiteki.v7i2.21103Keywords:
DC Motor, Robust Control, H∞ Control, Differential Evolution, PIDAbstract
Traditional synthesis of an H∞ controller usually results in a very high order of controller that is not practical for a low-cost embedded system such as a microcontroller. This paper presents a synthesis method of a low-order H∞ robust controller to control the position of a dc motor. The synthesis employed Differential Evolution optimization to find a controller that guarantees robust stability performance and robust stability against system perturbation. A second-order PID structure was chosen for the synthesized controller because this structure is simple and very famous. The proposed controller performance under uncertainties was compared to some other controllers. The first was compared with a conventional PID controller that had been finely tuned using the trial and error method in the nominal transfer function of the plant. Secondly, the proposed controller was compared with a full-order H∞ robust controller generated from a traditional synthesis method. Thirdly, the proposed controller was compared with another structure specified H∞ robust controller generated differently from the proposed method. All of the controllers result in a stable response. However, the proposed controller gives a better response in terms of overshoot and response time.Downloads
Published
2021-10-08
How to Cite
Sutyasadi, P. (2021). An Improved DC Motor Position Control Using Differential Evolution Based Structure Specified H∞ Robust Controller. Jurnal Ilmiah Teknik Elektro Komputer Dan Informatika, 7(2), 347–357. https://doi.org/10.26555/jiteki.v7i2.21103
Issue
Section
Articles
License
Authors who publish with JITEKI agree to the following terms:
- Authors retain copyright and grant the journal the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY-SA 4.0) that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
This work is licensed under a Creative Commons Attribution 4.0 International License