Penerapan Metode Taguchi pada Perancangan Eksperimen Beton Geopolimer Berbasis Abu Layang

ufafa anggarini, Claudia Kosada, Ndaru Candra Sukmana

Abstract


PT Petrokima Gresik produces fly ash from coal burning about 8048,89 tons in 2015. In general, one ton of coal burning can produce around 0.15 to 0.17 tons of fly ash waste. Fly ash waste can be utilized as a mixture where the main elements of fly ash are aluminum and silica, fulfilling criteria as the material having cement and geopolymer properties. Geopolymer preparation can be done by the sol-gel method at low temperature, where the emission of CO2 gas produced is a minimum amount. The problem faced is finding the right composition of geopolymer so that it produces the maximum compressive strength. One way is by designing a Taguchi experiment. The choice of the Taguchi method is based on the advantages of this method that can combine experimental results through controlled factors and optimal levels so it can achieve the maximum compressive strength of geopolymer. This research used 3 levels (-1,0,1) and 4 factors of fly ash, the solid/liquid ratio (SL), the molarity of NaOH (A), Sand/pasta geopolymer ratio (P/PG). Anova test showed significant effect on compressive strength of fly ash, S / L and A with value of 12,27> 2,90; 61,12> 2,90; 19,477> 2,90. While the value for P / PG is 1.92 <2.90 where the value of F-statistic is less than F table which means P / PG does not significantly affect the compressive strength of Geopolymer. With S/N higher is better to know the optimum composition of fly ash, S / L, A and P / PG equal to: 370 gram; 2.33 (70:30); 9 Molar, and 1.5. The prediction of Geopolymer maximum compressive strength with Taguchi method was obtained 18,71 Mpa.

 

Keywords:  Fly ash, Optimation, Taguchi, Geopolymer

Full Text:

PDF

References


Anggarini, U. & Sukmana, N.C., 2016. Synthesis and Characterization of Geopolymer from Fly Ash and Rice Husk Ash.

Benjamin C. McLellan, R.P.W..J.L..A.v.R..G.D., 2011. Costs and carbon emissions for Geopolymer pastes in comparison to Ordinary Portland Cement. Journal of Cleaner Production, XIX, pp.1080-90.

BPPT, 2016. ISBN 978-602-74702-0-0 Outlook Energi Indonesia 2016.

Chindaprasirt, P., Jaturapitakkul, C., Chalee, W. & Rattanasak, U., 2008. Comparative Study on The Characteristics of Fly Ash and Bottom Ash Geopolymers. Waste Management, XXIX, pp.539-43.

Davidovits, J., 2015. Geopolymer Chemistry and Applications. In J. Davidovits, ed. Polymers and Geopolymers. Institut Géopolymère. pp.1-20.

Ferna´ndez-Jime´nez, A. & A. Palomo, M.C., 2005. Microstructure Development of Alkali-Activated Fly Ash Cement: A Descriptive Model. Cement and Concrete Research, XXXV, pp.1204–09.

Hardjito, D., Wallah, S.E., Sumajouw, D.M.J. & Rangan, B.V., 2004. Factor Influencing The Compressive Strength of Fly Ash-Based Geopolymer Concrete. Civil Engineering Dimension, VI, pp.88-93.

Hartono, M., 2012. Meningkatkan Mutu Produk Plastik dengan Metode tagochi. Jurnal Teknik Industri, 13, pp.93-100.

Khaerunisa, H., Huda, M. & Damayanti, R., 2009. Kajian Emisi CO2 dari Pembakaran Batu Bara di Indonesia. Pusat Penelitian dan Pengembangan Teknologi Mineral dan Batubara.

Muharom & Siswadi, 2015. Desain Eksperimen Taguchi Untuk Meningkatkan Kualitas Batubata Berbahan Baku Tanah Liat. Jemis, III, pp.43-46.

Munir, M., 2008. Pemanfaatan Abu Batubara (Fly Ash) Untuk Hollow Block yang Bermutu dan Aman Bagi Lingkungan. Tesis. Semarang: Universitas Diponegoro.

Olivia, M. & Nikraz, H., 2012. Properties of Fly Ash Geopolymer Concrete Designed by Taguchi Method. Materials & Design, 36, pp.191-98.

Prasetya, F.A., Sukmana, N.C. & Anggarini, U., 2017. Study of Solid-Liquid Ratio of Fly Ash Geopolymer as Water Absorbent Material. MATEC, 97, pp.1-5.

Pupuk Indonesia, 2016. Laporan Tahunan. [Online] Available at: http://pupuk-indonesia.com [Accessed 17 Januari 2017].

Risdanareni, P., Puspitasari, P., Kartika, D. & Djatmika, B., 2016. Mechanical Properties of Geopolymer Paste with Fly Ash Variation. IMEEEC 2016, pp.1-6.

Safitri, D.E., 2009. Kajian Teknis dan Kajian Ekonomis Pemanfaatan Limbah Batubara (Fly Ash) pada Produksi Paving Block. Media Teknik Sipil, IX, pp.36-40.

Saleh, R., 2015. Limbah dan Pemanfaatan Abu Batubara. [Online] Available at: www.pusdiklat-minerba.esdm.go.id [Accessed 21 Januari 2017].

Subarmono, Jamasri, Wildan, M.W. & Kusnanto, 2008. Pemanfaatan Limbah Abu Terbang Sebagai Penguat Aluminium Matrix Composite. Jurnal Teknik Mesin, X, pp.109–14.

Tavor, D., Wolfson, A. & Shamaev, A., 2007. Recycling of Industrial Wastewater by Its Immobilization in Geopolymer Cement. Ind. Eng. Chem. Res, 46, pp.6801-05.

Wang, S., Li, L. & Zhua, Z.H., 2007. Solid-state conversion of fly ash to effective adsorbents for Cu removal from wastewater. journal of hazardous materials, B139, pp.254-59.

Wuryandari, T., Widiharih, T. & Anggraini, S.D., 2009. Metode Taguchi untuk Optimalisasi Produk pada Rancangan Faktorial. Media Statistika, II, pp.81-92.

Zulhendri & Yusri, 2008. Penggunaan Metode Parameter Taguchi dalam Mengidentifikasi Kekasaran Permukaan Optimum Proses Bubut. pp.94-101.




DOI: http://dx.doi.org/10.26555/chemica.v4i1.6776

Refbacks

  • There are currently no refbacks.


 


View Chemica Stats


Lisensi Creative Commons
This work is licensed under a Commons Attribution-ShareAlike 4.0 International License.