Resonansi Helmholtz: Pegas dalam Botol

Authors

  • Fitri Kurnia Dewi Universitas Ahmad Dahlan
  • Okimustava Okimustava Universitas Ahmad Dahlan

DOI:

https://doi.org/10.12928/bfi-jifpa.v11i2.20329

Keywords:

Frekuensi akustik, Frekuensi helmholz, Resonansi Helmholtz

Abstract

Penelitian ini bertujuan untuk menemukan nilai frekuensi akustik dari botol. Resonansi Helmholtz yang digunakan dalam penelitian ini adalah frekuensi Helmholtz pada botol kaca bekas sirup. Penelitian ini dilakukan dengan memanfaatkan sebuah botol yang memiliki leher untuk mengetahui nilai resonansi Helmholtz. Pengukuran resonansi Helmholtz menggunakan aplikasi dari android yaitu spectroid karena dapat mengukur besar frekuensi dan dB. Hasil yang diperoleh yaitu terjadi penurunan frekuensi pada variasi volume ke 2,1224955 m3. Berdasarkan data yang diperoleh sesuai dengan prinsip Helmholtz. Semakin besar volume udara maka akan semakin kecil frekuensinya. Sedangkan nilai dB akan kecil jika volume makin kecil.

References

Abbad, A., Atalla, N., Ouisse, M., & Doutres, O. (2019). Numerical and experimental investigations on the acoustic performances of membraned Helmholtz resonators embedded in a porous matrix. Journal of Sound and Vibration, 459, 114873.

Romadhona, I. C. (2017). Peningkatan kinerja serap bunyi pada elemen diffuser dengan penambahan resonator helmholtz tergandeng. Surakarta: Universitas Negeri Solo.

Cai, C., & Mak, C. M. (2018). Acoustic performance of different Helmholtz resonator array configurations. Applied Acoustics, 130, 204–209.

Cai, C., Mak, C. M., & Wang, X. (2017). Noise attenuation performance improvement by adding Helmholtz resonators on the periodic ducted Helmholtz resonator system. Applied Acoustics, 122, 8–15.

Chen, P., & Sun, Z. (1991). A review of non-destructive methods for quality evaluation and sorting of agricultural products. Journal of Agricultural Engineering Research, 49, 85–98.

Han, M. (2008). Sound reduction by a Helmholtz resonator (Lehigh University). Retrieved from https://preserve.lib.lehigh.edu/islandora/object/preserve%3Abp-3101590.

Jena, D. P., Dandsena, J., & Jayakumari, V. G. (2019). Demonstration of effective acoustic properties of different configurations of Helmholtz resonators. Applied Acoustics, 155, 371–382.

Kamila, Z., Yahya, I., & Utari, U. (2016). Influence of sugar palm ash fraction and resonator configuration on acoustic absorption performance of expose brick. Indonesian Journal of Applied Physics, 4(01), 19-27.

Komkin, A. I., Mironov, M. A., & Bykov, A. I. (2017). Sound absorption by a Helmholtz resonator. Acoustical Physics, 63(4), 385–392.

Meyer, E., Mechel, F., & Kurtze, G. (1958). Experiments on the influence of flow on sound attenuation in absorbing ducts. The Journal of the Acoustical Society of America, 30(3), 165–174.

Njane, S. N., Shinohara, Y., Kondo, N., Ogawa, Y., Suzuki, T., & Nishizu, T. (2018). Improved underwater Helmholtz resonator with an open cavity for sample volume estimation. Computers and Electronics in Agriculture, 147, 18–26.

Stein, L., & Sesterhenn, J. (2019). An acoustic model of a Helmholtz resonator under a grazing turbulent boundary layer. Acta Mechanica, 230(6), 2013–2029.

Susanto, R. (2014). Rancang bangun helmholtz resonator sebagai filter frekuensi dengan analogi resistor. In Seminar Nasional Pendidikan Sains IV 2014. Surakata: Universitas Sebelas Maret.

Wang, Y., Zhu, X., Zhang, T., Bano, S., Pan, H., Qi, L., … Yuan, Y. (2018). A renewable low-frequency acoustic energy harvesting noise barrier for high-speed railways using a Helmholtz resonator and a PVDF film. Applied Energy, 230, 52–61.

Zhao, X., Cai, L., Yu, D., Lu, Z., & Wen, J. (2017). A low frequency acoustic insulator by using the acoustic metasurface to a Helmholtz resonator. AIP Advances, 7(6), 065211.

Downloads

Published

2020-07-05

Issue

Section

Articles