A Multidimensional Concept of Mental Workload: A Systematic Review

Authors

  • Veny Hidayat Universitas Negeri Yogyakarta
  • Sumin Sumin Institut Agama Islam Negeri Pontianak
  • Badrun Kartowagiran Universitas Negeri Yogyakarta
  • Yulia Ayriza Universitas Negeri Yogyakarta

DOI:

https://doi.org/10.12928/jehcp.v11i4.24203

Abstract

The concept of mental workload is fully used and leads to various theoretical and methodological models. For this purpose, we are conducted in the same way as a systematic review for understanding the concept and a factor that identifies work and work situations that affect personal tasks, or mental workload field. A systematic review was obtained from scientific papers issued from 2010-to 2021. Mental workload is multidimensional, so that a conceptual definition of mental workload should therefore integrally encompass the most elementary dimensions of mental workload. In general, most factors affected mental workloads, including working environments, individual differences, temporal pressure, and task difficulty/compliance complexity. Techniques for assessing subjective workloads are popular in several studies because of their ease of use and sensitivity to workload fluctuations. The NASATLX scale is the most common subjective technique and is used in a wide range of fields. Subjective and objective measurements cannot even measure all kinds of factors that affect mental distress. The main difficulty facing researchers is establishing standardized measurements of mental workload and its normal range so that effective comparisons can be made between groups of subjects. These results can provide measurement development recommendations using three approaches: subjective, objective, and behavioral.

Keywords: mental workload; measurement; workload factors

Author Biographies

Veny Hidayat, Universitas Negeri Yogyakarta

Department of Educational Research and Evaluation, Postgraduate Program

Badrun Kartowagiran, Universitas Negeri Yogyakarta

Department of Educational Research and Evaluation, Postgraduate Program

Yulia Ayriza, Universitas Negeri Yogyakarta

Department of Educational Research and Evaluation, Postgraduate Program

References

Alexandre, K., Rauffet, P., Chauvin, C., dan Coppin, G. (2016). A dynamic closed-looped and multidimensional model for Mental Workload evaluation (Vol. 49). https://doi.org/10.1016/j.ifacol.2016.10.621

Antonenko, P., Paas, F., Grabner, R., dan van Gog, T. (2010). Using Electroencephalography to Measure Cognitive Load. Educational Psychology Review, 22(4), 425-438. https://doi.org/10.1007/s10648-010-9130-y

Ayaz, H., Shewokis, P. A., Bunce, S., Izzetoglu, K., Willems, B., dan Onaral, B. (2012). Optical brain monitoring for operator training and mental workload assessment. NeuroImage, 59(1), 36-47. https://doi.org/https://doi.org/10.1016/j.neuroimage.2011.06.023

Backs, R. W., Lenneman, J. K., Wetzel, J. M., dan Green, P. (2003). Cardiac Measures of Driver Workload during Simulated Driving with and without Visual Occlusion. Human Factors, 45(4), 525-538. https://doi.org/10.1518/hfes.45.4.525.27089

Bommer, S. C., dan Fendley, M. (2018). A theoretical framework for evaluating mental workload resources in human systems design for manufacturing operations. International Journal of Industrial Ergonomics, 63, 7-17. https://doi.org/https://doi.org/10.1016/j.ergon.2016.10.007

Boucsein, W. (2012). Electrodermal activity. Springer Science & Business Media.

Braarud, P. Ø. (2020). An efficient screening technique for acceptable mental workload based on the NASA Task Load Index—development and application to control room validation. International Journal of Industrial Ergonomics, 76, 102904. https://doi.org/https://doi.org/10.1016/j.ergon.2019.102904

Byrne, A. (2011). Measurement of mental workload in clinical medicine: a review study. Anesthesiology and pain medicine, 1(2), 90-94. https://doi.org/https://doi.org/10.5812/kowsar.22287523.2045

Byrne, A., Tweed, N., dan Halligan, C. (2014). A pilot study of the mental workload of objective structured clinical examination examiners [https://doi.org/10.1111/medu.12387]. Medical Education, 48(3), 262-267. https://doi.org/https://doi.org/10.1111/medu.12387

Cain, B. (2007). RTO-TR-HFM-121-Part-II-Human Factors Considerations in the Design, Use, and Evaluation of AMVE-Technology. A Review of the Mental Workload Literature. http://ftp.rta.nato.int/public//PubFullText/RTO/TR/RTO-TR-HFM-121-PART-II///TR-HFM-121-Part-II-04.pdf

Di Stasi, L. L., Antolí, A., dan Cañas, J. J. (2011). Main sequence: An index for detecting mental workload variation in complex tasks. Appl Ergon, 42(6), 807-813. https://doi.org/https://doi.org/10.1016/j.apergo.2011.01.003

DiDomenico, A., dan Nussbaum, M. A. (2011). Effects of different physical workload parameters on mental workload and performance. International Journal of Industrial Ergonomics, 41(3), 255-260. https://doi.org/https://doi.org/10.1016/j.ergon.2011.01.008

Ding, Y., Cao, Y., Duffy, V. G., Wang, Y., dan Zhang, X. (2020). Measurement and identification of mental workload during simulated computer tasks with multimodal methods and machine learning. Ergonomics, 63(7), 896-908. https://doi.org/10.1080/00140139.2020.1759699

Fallahi, M., Motamedzade, M., Heidarimoghadam, R., Soltanian, A. R., dan Miyake, S. (2016). Effects of mental workload on physiological and subjective responses during traffic density monitoring: A field study. Appl Ergon, 52, 95-103. https://doi.org/https://doi.org/10.1016/j.apergo.2015.07.009

Galy, E., Cariou, M., dan Mélan, C. (2012). What is the relationship between mental workload factors and cognitive load types? International Journal of Psychophysiology, 83(3), 269-275. https://doi.org/https://doi.org/10.1016/j.ijpsycho.2011.09.023

Galy, E., Paxion, J., dan Berthelon, C. (2018). Measuring mental workload with the NASA-TLX needs to examine each dimension rather than relying on the global score: an example with driving. Ergonomics, 61(4), 517-527. https://doi.org/10.1080/00140139.2017.1369583

Grier, R. A. (2015). How High is High? A Meta-Analysis of NASA-TLX Global Workload Scores. Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 59(1), 1727-1731. https://doi.org/10.1177/1541931215591373

Gurses, A. P., dan Carayon, P. (2009). Exploring performance obstacles of intensive care nurses. Appl Ergon, 40(3), 509-518. https://doi.org/10.1016/j.apergo.2008.09.003

Hertzum, M., dan Holmegaard, K. D. (2013). Perceived Time as a Measure of Mental Workload: Effects of Time Constraints and Task Success. International Journal of Human–Computer Interaction, 29(1), 26-39. https://doi.org/10.1080/10447318.2012.676538

Jeffri, N. F. S., dan Awang Rambli, D. R. (2021). A review of augmented reality systems and their effects on mental workload and task performance. Heliyon, 7(3), e06277-e06277. https://doi.org/10.1016/j.heliyon.2021.e06277

Longo, L. (2015). A defeasible reasoning framework for human mental workload representation and assessment. Behaviour & Information Technology, 34(8), 758-786. https://doi.org/10.1080/0144929X.2015.1015166

Mandrick, K., Chua, Z., Causse, M., Perrey, S., dan Dehais, F. (2016). Why a Comprehensive Understanding of Mental Workload through the Measurement of Neurovascular Coupling Is a Key Issue for

Neuroergonomics? [Opinion]. Frontiers in Human Neuroscience, 10. https://doi.org/10.3389/fnhum.2016.00250

Marchand, C., De Graaf, J. B., dan Jarrassé, N. (2021). Measuring mental workload in assistive wearable devices: a review. Journal of NeuroEngineering and Rehabilitation, 18(1), 160. https://doi.org/10.1186/s12984-021-00953-w

Marinescu, A., Sharples, S., Ritchie, A. C., López, T. S., McDowell, M., dan Morvan, H. (2016). Exploring the Relationship between Mental Workload, Variation in Performance and Physiological Parameters. IFAC-PapersOnLine, 49(19), 591-596. https://doi.org/https://doi.org/10.1016/j.ifacol.2016.10.618

Marinescu, A. C., Sharples, S., Ritchie, A. C., Sánchez López, T., McDowell, M., dan Morvan, H. P. (2018). Physiological Parameter Response to Variation of Mental Workload. Hum Factors, 60(1), 31-56. https://doi.org/10.1177/0018720817733101

Matthews, G., Reinerman-Jones, L. E., Barber, D. J., dan Abich, J. (2014). The Psychometrics of Mental Workload: Multiple Measures Are Sensitive but Divergent. Human Factors, 57(1), 125-143. https://doi.org/10.1177/0018720814539505

Mehta, R., dan Parasuraman, R. (2013). Neuroergonomics: a review of applications to physical and cognitive work [Review]. Frontiers in Human Neuroscience, 7. https://www.frontiersin.org/article/10.3389/fnhum.2013.00889

Mohammadi, M., Mazloumi, A., Kazemi, Z., dan Zeraati, H. (2016). Evaluation of Mental Workload among ICU Ward's Nurses. Health promotion perspectives, 5(4), 280-287. https://doi.org/10.15171/hpp.2015.033

Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G., dan The, P. G. (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLOS Medicine, 6(7), e1000097. https://doi.org/10.1371/journal.pmed.1000097

Ozkan, A., Ozdevecioglu, M., Kaya, Y., dan Koç, F. Ö. (2015). Effects of mental workloads on depression–anger symptoms and interpersonal sensitivities of accounting professionals. Revista de Contabilidad, 18(2), 194-199. https://doi.org/https://doi.org/10.1016/j.rcsar.2014.06.005

Rusnock, C. F., dan Borghetti, B. J. (2018). Workload profiles: A continuous measure of mental workload. International Journal of Industrial Ergonomics, 63, 49-64. https://doi.org/https://doi.org/10.1016/j.ergon.2016.09.003

Shakouri, M., Ikuma, L. H., Aghazadeh, F., dan Nahmens, I. (2018). Analysis of the sensitivity of heart rate variability and subjective workload measures in a driving simulator: The case of highway work zones. International Journal of Industrial Ergonomics, 66, 136-145. https://doi.org/https://doi.org/10.1016/j.ergon.2018.02.015

Shamseer, L., Moher, D., Clarke, M., Ghersi, D., Liberati, A., Petticrew, M., . . . Stewart, L. A. (2015). Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: elaboration and explanation. BMJ : British Medical Journal, 349, g7647. https://doi.org/10.1136/bmj.g7647

Tufanaru, C., Munn, Z., Aromataris, E., Campbell, J., dan Hopp, L. (2019). Systematic review of effectiveness. In JBI Manual for Evidence Synthesis. https://wiki.jbi.global/display/MANUAL/Chapter+3%3A+Systematic+reviews+of+effectiveness

Van Acker, B. B., Parmentier, D. D., Vlerick, P., dan Saldien, J. (2018). Understanding mental workload: from a clarifying concept analysis toward an implementable framework. Cognition, Technology & Work, 20(3), 351-365. https://doi.org/10.1007/s10111-018-0481-3

Van der Kleij, R., Hueting, T., dan Schraagen, J. M. (2018). Change detection support for supervisory controllers of highly automated systems: Effects on performance, mental workload, and recovery of situation awareness following interruptions. International Journal of Industrial Ergonomics, 66, 75-84. https://doi.org/https://doi.org/10.1016/j.ergon.2018.02.010

Wickens, C. D., Helton, W. S., Hollands, J. G., dan Banbury, S. (2021). Engineering Psychology and Human Performance (5th ed.). Routledge. https://doi.org/ https://doi.org/10.4324/9781003177616

Wihardja, H., Hariyati, R. T. S., dan Gayatri, D. (2019). Analysis of factors related to the mental workload of nurses during interaction through nursing care in the intensive care unit [10.1016/j.enfcli.2019.06.002]. Enfermería Clínica, 29, 262-269. https://doi.org/10.1016/j.enfcli.2019.06.002

Young, M. S., Brookhuis, K. A., Wickens, C. D., dan Hancock, P. A. (2015). State of science: mental workload in ergonomics. Ergonomics, 58(1), 1-17. https://doi.org/10.1080/00140139.2014.956151

Young, M. S., dan Stanton, N. A. (2004). Mental workload. In Handbook of human factors and ergonomics methods (pp. 416-426). CRC Press.

Downloads

Published

2022-12-28

Issue

Section

Articles