Optimasi Parameter Support Vector Regression (SVR) Menggunakan Algoritma Grey Wolf Optimizer (GWO)

Authors

  • Nia Andriani Laila

DOI:

https://doi.org/10.26555/jim.v11i2.30889

Keywords:

Prediksi ,, Corelation Based Feature Selection (CFS) ,, Grid Search Optimization (GSO),, Support Vector Regression (SVR) ,

Abstract

Prediksi adalah suatu metode yang dilakukan untuk mendapatkan gambaran atau memperkirakan sesuatu yang terjadi di masa yang akan datang dengan menggunakan informasi atau data yang ada pada masa lampau dan masa kini. Support Vector Regression (SVR) merupakan salah satu metode yang digunakan untuk melakukan prediksi. Penelitian ini dilakukan dengan tujuan untuk meningkatkan performa dari SVR dalam memprediksi harga saham pada periode 1 februari 2021 hingga 23 februari 2023. Oleh karena itu pada penelitian ini menggunakan seleksi fitur Corelation Based Feature Selection (CFS) dan metode optimasi Grid Search Optimization (GSO) yang diimplementasikan pada SVR. Hasil penelitian menunjukkan bahwa prediksi model SVR diperoleh nilai RMSE sebesar 0.00703 pada data training dan 0.00611 pada data testing. Sedangkan pada model SVR dengan algoritma GSO diperoleh nilai RMSE sebesar 0.00429 pada data training dan 0.00367 pada data testing. Berdasarkan nilai RMSE yang diperoleh menunjukkan adanya peningkatan performa pada SVR dengan penurunan nilai RMSE sebesar 0.00274 pada data training dan 0.00244 pada data testing.

ABSTRACT

Prediction is a method used to get a picture of or estimate something that will happen in the future using information or data that exists in the past and present. Support Vector Regression (SVR) is one of the methods used to make predictions. This research was conducted with the aim of improving the performance of SVR in predicting stock prices for the period February 1, 2021, to February 23, 2023. Therefore, this study uses the correlation-based feature selection (CFS) and grid search optimization (GSO) optimization methods implemented in SVR. The results showed that the prediction of the SVR model obtained an RMSE value of 0.00703 on training data and 0.00611 on testing data. While the SVR model with the GSO algorithm obtained an RMSE value of 0.00429 in the testing data and 0.00367 in the testing data, based on the RMSE value obtained, it shows an increase in performance in SVR with a decrease in the RMSE value of 0.00274 in the training data and 0.00244 in the testing data.
This is an open-access article under the CC–BY-SA license.

 

References

Y. Kusumawati, K. Widyatmoko, and C. Irawan, “Gold Price Prediction Using Support Vector

Regression,” J. Appl. Intell. Syst., vol. 7, no. 1, pp. 89–102, 2022, doi: 10.33633/jais.v7i1.6124.

F. C. İskenderoğlu, M. K. Baltacioglu, M. H. Demir, G. Bidini, A. Baldinelli, and L. Barelli,

“Comparison of support vector regression and random forest algorithms for estimating the SOFC

output voltage by considering hydrogen flow rates,” Int. J. Hydrog. Energy, vol. 45, no. 60, pp.

35023–35038, 2020, doi: 10.1016/j.ijhydene.2020.07.265.

Y. S. Amirkhalili, A. Aghsami, and F. Jolai, “Comparison of Time Series ARIMA Model and Support

Vector Regression,” Int. J. Hybrid Inf. Technol., vol. 13, no. 1, pp. 7–18, 2020, doi:

10.21742/ijhit.2020.13.1.02.

C. Peng, Z. Che, T. W. Liao, and Z. Zhang, “Prediction using multi-objective slime mould algorithm

optimized support vector regression model,” Appl. Soft Comput., vol. 145, p. 110580, 2023, doi:

10.1016/j.asoc.2023.110580.

Sukamto, Hadiyanto, and Kurnianingsih, “KNN Optimization Using Grid Search Algorithm for

Preeclampsia Imbalance Class,” E3S Web Conf., vol. 448, 2023, doi: 10.1051/e3sconf/202344802057.

S. Shinde, “Liver Disease Prediction Based on Grid Search and Random Forest Classification,” Int.

J. Eng. Appl. Sci. Technol., vol. 7, no. 1, pp. 136–140, 2022, doi: 10.33564/ijeast.2022.v07i01.020.

T. T. Ngoc, L. Van Dai, and L. B. Minh, “Effects of Data Standardization on Hyperparameter

Optimization with the Grid Search Algorithm Based on Deep Learning: A Case Study of Electric

Load Forecasting,” Adv. Technol. Innov., vol. 7, no. 4, pp. 258–269, 2022, doi:

10.46604/aiti.2022.9227.

Y. Qi, H. Liu, and J. Zhao, “Prediction model and demonstration of regional agricultural carbon

emissions based on Isomap–ACO–ET: a case study of Guangdong Province, China,” Sci. Rep., vol.

13, no. 1, pp. 1–11, 2023, doi: 10.1038/s41598-023-39996-5.

Y. Sun, S. Ding, and Z. Z. & W. Jia, “An improved grid search algorithm to optimize SVR for

prediction,” vol. 25, pp. 5633–5644, 2021.

A. N. Puteri, A. Arizal, and A. D. Achmad, “Feature Selection Correlation-Based pada Prediksi

Nasabah Bank Telemarketing untuk Deposito,” MATRIK J. Manajemen, Tek. Inform. dan Rekayasa

Komput., vol. 20, no. 2, pp. 335–342, 2021, doi: 10.30812/matrik.v20i2.1183.

H. Fröhlich, O. Chapelle, and B. Schölkopf, “Feature Selection for Support Vector Machines using

Genetic Algorithms,” Int. J. AI Tools Spec. Issue Sel. Pap. from 15th IEEE Int. Conf. Tools with AI

2003, vol. 13, no. 4, pp. 791–800, 2004, doi: 10.1142/S0218213004001818.

A. M. Kuruvilla and N. . Balaji, “Heart disease prediction system using Correlation Based Feature

Selection with Multilayer Perceptron approach.,” IOP Conf. Ser. Mater. Sci. Eng., vol. 1085, no. 1,

p. 012028, 2021, doi: 10.1088/1757-899x/1085/1/012028.

Downloads

Published

2025-04-23

Issue

Section

Articles