Implementasi Metode SVM-PSO Dengan Fitur Selection Variance Threshold Pada Klasifikasi Penyakit Diabetes Mellitus

Authors

  • Pratiwi Kistiya Ningrum
  • Joko Purwadi

DOI:

https://doi.org/10.26555/jim.v10i2.30877

Keywords:

SVM-PSO ,, Variance Threshold,, Klasifikasi ,, Diabetes Mellitus,, Optimasi ,

Abstract

Pada penelitian ini membahas tentang kasus klasifikasi pada data penyakit diabetes. Metode yang digunakan dalam penelitian ini adalah metode Support Vector Machine yang dioptimalkan dengan algoritma Particle Swarm Optimization guna memperoleh parameter terbaik dengan kombinasi seleksi fitur menggunakan Variance Threshold. Penelitian ini bertujuan untuk mengetahui cara kerja dan hasil akurasi dari metode Support Vector Machine dengan optimasi Particle Swarm Optimization menggunakan seleksi fitur Variance Threshold. Hasil penelitian menggunakan kombinasi metode tersebut menunjukkan hasil akurasi sebesar 80%. Hasil akurasi tersebut lebih tinggi jika dibandingkan dengan metode Support Vector Machine tunggal tanpa optimasi dan seleksi fitur dengan akurasi sebesar 76%. Meningkatkan akurasi sebesar 4% dari 76% menjadi 80%.

 

References

C. Sreedhar, N. Kasiviswanath, and P. Chenna Reddy, “Clustering large datasets using K-means

modified inter and intra clustering (KM-I2C) in Hadoop,” J. Big Data, vol. 4, no. 1, 2017, doi:

10.1186/s40537-017-0087-2.

S. Agarwal, “Data Mining: Data Mining Concepts and Techniques,” pp. 203–207. doi:

10.1109/ICMIRA.2013.45.

M. North, Data Mining for the Masses. 2012. [Online]. Available: http://1xltkxylmzx3z8gd647akcdvov.wpengine.netdna-cdn.com/wpcontent/uploads/2013/10/DataMiningForTheMasses.pdf%5Cnhttps://sites.google.com/site/dataminingforthemasses/

V. N. Vapnik, The Nature of Statistical Learning Theory. 2nd ed.: Springer Verlag, 1995.

T. Sousa, A. Silva, and A. Neves, “Particle Swarm based Data Mining Algorithms for classification

tasks,” Parallel Comput., vol. 30, no. 5–6, pp. 767–783, 2004, doi: 10.1016/j.parco.2003.12.015.

J. H. Joloudari, H. Saadatfar, A. Dehzangi, and S. Shamshirband, “Computer-aided decision-making

for predicting liver disease using PSO-based optimized SVM with feature selection,” Informatics

Med. Unlocked, vol. 17, no. October, p. 100255, 2019, doi: 10.1016/j.imu.2019.100255.

D. Saputra, W. S. Dharmawan, and W. Irmayani, “Performance Comparison of the SVM and SVMPSO Algorithms for Heart Disease Prediction,”Int.J.Adv.DataInf.Syst.,vol.3,no.2,pp.74–86,2022,doi:10.25008/ijadis.v3i2.1243.

D. Saputra, W. Irmayani, D. Purwaningtias, and J. Sidauruk, “A Comparative Analysis of C4.5

Classification Algorithm, Naïve Bayes and Support Vector Machine Based on Particle Swarm

Optimization (PSO) for Heart Disease Prediction,” Int. J. Adv. Data Inf. Syst., vol. 2, no. 2, pp. 84–

95, 2021, doi: 10.25008/ijadis.v2i2.1221.

Z. Song, S. Liu, M. Jiang, and S. Yao, “Research on the Settlement Prediction Model of Foundation

Pit Based on the Improved PSO-SVM Model,” Sci. Program., vol. 2022, 2022, doi:10.1155/2022/1921378.

I. Behravan, O. Dehghantanha, and S. H. Zahiri, “An optimal SVM with feature selection using

multi-objective PSO,” 1st Conf. Swarm Intell. Evol. Comput. CSIEC 2016 - Proc., vol. 2016, pp. 76–

81, 2016, doi: 10.1109/CSIEC.2016.7482135.

Y. Saeys, I. Inza, and P. Larrañaga, “A review of feature selection techniques in bioinformatics,”

Bioinformatics, vol. 23, no. 19, pp. 2507–2517, 2007, doi: 10.1093/bioinformatics/btm344.

H. Bai, “Preparing Teacher Education Students to Integrate Mobile Learning into Elementary

Education,” TechTrends, vol. 63, no. 6, pp. 723–733, Nov. 2019, doi: 10.1007/s11528-019-00424z.

F. Giannakas, A. Papasalouros, G. Kambourakis, and S. Gritzalis, “A comprehensive cybersecurity

learning platform for elementary education,” Inf. Secur. J. A Glob. Perspect., vol. 28, no. 3, pp. 81–

106, May 2019, doi: 10.1080/19393555.2019.1657527.

R. M. Vink et al., “Self-reported adverse childhood experiences and quality of life among children

in the two last grades of Dutch elementary education,” Child Abuse Negl., vol. 95, p. 104051, Sep.

2019, doi: 10.1016/j.chiabu.2019.104051.

Downloads

Published

2025-04-22

Issue

Section

Articles