Analisis Performa Algoritma Smote-Bagging Dalam Klasifikasi Data Tidak Seimbang Dengan Metode Chi-Square Automatic Interaction Detection (CHAID)

Authors

  • Tyas Kusuma Argani

DOI:

https://doi.org/10.26555/jim.v10i1.30873

Keywords:

CHAID,, Data tidak seimbang,, Klasifikasi,, SMOTE-Bagging,

Abstract

Klasifikasi data tidak seimbang sering menghadapi tantangan dalam mencapai keseimbangan antara sensitivitas dan spesifisitas. Penelitian ini menganalisis performa algoritma SMOTE-Bagging pada klasifikasi data tidak seimbang menggunakan metode Chi-Square Automatic Interaction Detection (CHAID), dengan studi kasus stunting pada balita tahun 2022 di Bojongsoang. SMOTE (Synthetic Minority Over-sampling Technique) digunakan untuk meningkatkan representasi kelas minoritas dalam dataset, kemudian digabungkan dengan teknik Bagging untuk meningkatkan kinerja klasifikasi. Hasil penelitian menunjukkan bahwa algoritma SMOTE-Bagging CHAID meningkatkan performa dalam klasifikasi data tidak seimbang, dengan peningkatan sensitivitas sebesar 65%, Area Under Curve (AUC) sebesar 42%, dan keseimbangan antara sensitivitas dan spesifisitas (G-Mean) sebesar 71%. Implementasi SMOTE-Bagging meningkatkan sensitivitas dan memberikan keseimbangan yang lebih baik antara sensitivitas dan spesifisitas.

References

A. Srirahayu and L. S. Pribadie, “Review Paper Data Mining Klasifikasi Data Mining,” J. Ilm. Inform.

Glob., vol. 14, no. 1, 2023, doi: 10.36982/jiig.v14i1.2981.

L. Breiman, “Bagging predictors,” Mach. Learn., vol. 24, no. 2, pp. 123–140, 1996, doi:

10.1023/A:1018054314350. [3] Y. Pristyanto and A. A. Zein, “Model Balanced Bagging Berbasis Decision Tree Pada Dataset

Imbalanced Class,” J. Sisfokom (Sistem Inf. dan Komputer), vol. 12, no. 1, pp. 9–15, 2023, doi:

10.32736/sisfokom.v12i1.1399.

C. A. Gallagher, H. M. Monroe, and J. L. Fish, “An Iterative Approach To Classification Analysis,” J.

Appl. Stat., vol. 29, pp. 237–280, 2000.

A. Fitrianto, W. Z. A. Wan Muhamad, and B. Susetyo, “Development of direct marketing strategy

for banking industry: The use of a Chi-squared Automatic Interaction Detector (CHAID) in

deposit subscription classification,” J. Socioecon. Dev., vol. 5, no. 1, p. 64, 2022, doi:

10.31328/jsed.v5i1.3420.

C. Deng, F. Yi, X. Li, J. Tang, and G. Sun, “Performance Analysis of CHAID Algorithm for Accuracy,”

Proc. - 2023 Int. Conf. Pattern Recognition, Mach. Vis. Intell. Algorithms, PRMVIA 2023, pp. 182–

186, 2023, doi: 10.1109/PRMVIA58252.2023.00036.“View of SMOTE_ Synthetic Minority Over-sampling Technique.pdf.”

Fithria Siti Hanifah, Hari Wijayanto, and Anang Kurnia, “SMOTE bagging algorithm for

imbalanced dataset in logistic regression analysis (case: Credit of bank X),” Appl. Math. Sci., vol. 9, no. 137–140, pp. 6857–6865, 2015, doi: 10.12988/ams.2015.58562.

V. Rattan, R. Mittal, J. Singh, and V. Malik, “Analyzing the application of SMOTE on machine

learning classifiers,” 2021 Int. Conf. Emerg. Smart Comput. Informatics, ESCI 2021, no. March, pp.

692–695, 2021, doi: 10.1109/ESCI50559.2021.9396962.

P. Chittora et al., “Prediction of Chronic Kidney Disease - A Machine Learning Perspective,” IEEE

Access, vol. 9, no. January, pp. 17312–17334, 2021, doi: 10.1109/ACCESS.2021.3053763.

F. Novitasari, E. Haerani, A. Nazir, J. Jasril, and F. Insani, “Sistem Klasifikasi Penyakit Jantung

Menggunakan Teknik Pendekatan SMOTE Pada Algoritma Modified K-Nearest Neighbor,” Build.

Informatics, Technol. Sci., vol. 5, no. 1, pp. 274–284, 2023, doi: 10.47065/bits.v5i1.3610.

D. S. Sisodia and U. Verma, “Distinct multiple learner-based ensemble smotebagging (ML-ESB)

method for classification of binary class imbalance problems,” Int. J. Technol., vol. 10, no. 4, pp.

721–730, 2019, doi: 10.14716/ijtech.v10i4.1743.

N. Iriawan et al., “On The Comparison: Random Forest, SMOTEBagging, and Bernoulli Mixture to

Classify Bidikmisi Dataset in East Java,” 2018 Int. Conf. Comput. Eng. Netw. Intell. Multimed., 2018,

doi: 10.1109/CENIM.2018.8711035.

M. Mukherjee and M. Khushi, “Smote-enc: A novel smote-based method to generate synthetic

data for nominal and continuous features,” Appl. Syst. Innov., vol. 4, no. 1, 2021, doi:

10.3390/asi4010018.

D. T. Utari, “Integration of Svm and Smote-Nc for Classification of Heart Failure Patients,”

BAREKENG J. Ilmu Mat. dan Terap., vol. 17, no. 4, pp. 2263–2272, 2023, doi:

10.30598/barekengvol17iss4pp2263-2272.

E. C. Gök and M. O. Olgun, “SMOTE-NC and gradient boosting imputation based random forest

classifier for predicting severity level of covid-19 patients with blood samples,” Neural Comput.

Appl., vol. 33, no. 22, pp. 15693–15707, 2021, doi: 10.1007/s00521-021-06189-y.

D. D. Astuti, R. B. Adriani, and T. W. Handayani, “Pemberdayaan Masyarakat Dalam Rangka,” vol.

4, no. 2, pp. 2–6, 2020.

Downloads

Published

2025-04-22

Issue

Section

Articles