Analisis Performa Algoritma Smote-Bagging Dalam Klasifikasi Data Tidak Seimbang Dengan Metode Chi-Square Automatic Interaction Detection (CHAID)
DOI:
https://doi.org/10.26555/jim.v10i1.30873Keywords:
CHAID,, Data tidak seimbang,, Klasifikasi,, SMOTE-Bagging,Abstract
Klasifikasi data tidak seimbang sering menghadapi tantangan dalam mencapai keseimbangan antara sensitivitas dan spesifisitas. Penelitian ini menganalisis performa algoritma SMOTE-Bagging pada klasifikasi data tidak seimbang menggunakan metode Chi-Square Automatic Interaction Detection (CHAID), dengan studi kasus stunting pada balita tahun 2022 di Bojongsoang. SMOTE (Synthetic Minority Over-sampling Technique) digunakan untuk meningkatkan representasi kelas minoritas dalam dataset, kemudian digabungkan dengan teknik Bagging untuk meningkatkan kinerja klasifikasi. Hasil penelitian menunjukkan bahwa algoritma SMOTE-Bagging CHAID meningkatkan performa dalam klasifikasi data tidak seimbang, dengan peningkatan sensitivitas sebesar 65%, Area Under Curve (AUC) sebesar 42%, dan keseimbangan antara sensitivitas dan spesifisitas (G-Mean) sebesar 71%. Implementasi SMOTE-Bagging meningkatkan sensitivitas dan memberikan keseimbangan yang lebih baik antara sensitivitas dan spesifisitas.
References
A. Srirahayu and L. S. Pribadie, “Review Paper Data Mining Klasifikasi Data Mining,” J. Ilm. Inform.
Glob., vol. 14, no. 1, 2023, doi: 10.36982/jiig.v14i1.2981.
L. Breiman, “Bagging predictors,” Mach. Learn., vol. 24, no. 2, pp. 123–140, 1996, doi:
10.1023/A:1018054314350. [3] Y. Pristyanto and A. A. Zein, “Model Balanced Bagging Berbasis Decision Tree Pada Dataset
Imbalanced Class,” J. Sisfokom (Sistem Inf. dan Komputer), vol. 12, no. 1, pp. 9–15, 2023, doi:
10.32736/sisfokom.v12i1.1399.
C. A. Gallagher, H. M. Monroe, and J. L. Fish, “An Iterative Approach To Classification Analysis,” J.
Appl. Stat., vol. 29, pp. 237–280, 2000.
A. Fitrianto, W. Z. A. Wan Muhamad, and B. Susetyo, “Development of direct marketing strategy
for banking industry: The use of a Chi-squared Automatic Interaction Detector (CHAID) in
deposit subscription classification,” J. Socioecon. Dev., vol. 5, no. 1, p. 64, 2022, doi:
10.31328/jsed.v5i1.3420.
C. Deng, F. Yi, X. Li, J. Tang, and G. Sun, “Performance Analysis of CHAID Algorithm for Accuracy,”
Proc. - 2023 Int. Conf. Pattern Recognition, Mach. Vis. Intell. Algorithms, PRMVIA 2023, pp. 182–
186, 2023, doi: 10.1109/PRMVIA58252.2023.00036.“View of SMOTE_ Synthetic Minority Over-sampling Technique.pdf.”
Fithria Siti Hanifah, Hari Wijayanto, and Anang Kurnia, “SMOTE bagging algorithm for
imbalanced dataset in logistic regression analysis (case: Credit of bank X),” Appl. Math. Sci., vol. 9, no. 137–140, pp. 6857–6865, 2015, doi: 10.12988/ams.2015.58562.
V. Rattan, R. Mittal, J. Singh, and V. Malik, “Analyzing the application of SMOTE on machine
learning classifiers,” 2021 Int. Conf. Emerg. Smart Comput. Informatics, ESCI 2021, no. March, pp.
692–695, 2021, doi: 10.1109/ESCI50559.2021.9396962.
P. Chittora et al., “Prediction of Chronic Kidney Disease - A Machine Learning Perspective,” IEEE
Access, vol. 9, no. January, pp. 17312–17334, 2021, doi: 10.1109/ACCESS.2021.3053763.
F. Novitasari, E. Haerani, A. Nazir, J. Jasril, and F. Insani, “Sistem Klasifikasi Penyakit Jantung
Menggunakan Teknik Pendekatan SMOTE Pada Algoritma Modified K-Nearest Neighbor,” Build.
Informatics, Technol. Sci., vol. 5, no. 1, pp. 274–284, 2023, doi: 10.47065/bits.v5i1.3610.
D. S. Sisodia and U. Verma, “Distinct multiple learner-based ensemble smotebagging (ML-ESB)
method for classification of binary class imbalance problems,” Int. J. Technol., vol. 10, no. 4, pp.
721–730, 2019, doi: 10.14716/ijtech.v10i4.1743.
N. Iriawan et al., “On The Comparison: Random Forest, SMOTEBagging, and Bernoulli Mixture to
Classify Bidikmisi Dataset in East Java,” 2018 Int. Conf. Comput. Eng. Netw. Intell. Multimed., 2018,
doi: 10.1109/CENIM.2018.8711035.
M. Mukherjee and M. Khushi, “Smote-enc: A novel smote-based method to generate synthetic
data for nominal and continuous features,” Appl. Syst. Innov., vol. 4, no. 1, 2021, doi:
10.3390/asi4010018.
D. T. Utari, “Integration of Svm and Smote-Nc for Classification of Heart Failure Patients,”
BAREKENG J. Ilmu Mat. dan Terap., vol. 17, no. 4, pp. 2263–2272, 2023, doi:
10.30598/barekengvol17iss4pp2263-2272.
E. C. Gök and M. O. Olgun, “SMOTE-NC and gradient boosting imputation based random forest
classifier for predicting severity level of covid-19 patients with blood samples,” Neural Comput.
Appl., vol. 33, no. 22, pp. 15693–15707, 2021, doi: 10.1007/s00521-021-06189-y.
D. D. Astuti, R. B. Adriani, and T. W. Handayani, “Pemberdayaan Masyarakat Dalam Rangka,” vol.
4, no. 2, pp. 2–6, 2020.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Tyas Kusuma Argani

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
This work is licensed under a Creative Commons Attribution-ShareAlike 2.0 Generic License.