Graf Order Elemen: representasi baru grup berhingga pada graf
DOI:
https://doi.org/10.26555/konvergensi.v9i1.24201Keywords:
Graf Order Elemen, Graf Hamilton, Graf EulerAbstract
Graf Order Elemen merupakan representasi grup berhingga pada graf dengan memandang anggota dari grup sebagai vertek dari graf dan vertek adjecent dengan jika hanya jika order membagi order atau sebaliknya. Melalui penelitian ini disampaikan bahwa graf order elemen dari grup siklik dengan order prima dan grup siklik dengan order bilangan prima dan bilangan bulat mempunyai hubungan dengan graf komplit, graf Hamilton dan graf Euler. Selain itu dibahas juga komplemen dari graf order elemen untuk grup siklik dengan order tertentu.References
Y. Luo, Y. Hao dan G. T. Clarke, “On the Cayley graphs of completely simple semigroups,” Semigroup Forum, pp. 82, 288-295. doi: 10.1007/s00233-010-9267-5, 2011.
Y. Zhu, “Generalized Cayley graphs of semigroups I,” Semigroup Forum, pp. 84, 131–143. doi: 10.1007/s00233-011-9368-9, 2012.
N. Hosseinzadeh dan A. Assari, “Graph operations on Cayley graphs of semigroups,” International Journal of Applied Mathematical Research, pp. 3 (1), 54-57. doi: 10.14419/ijamr.v3i1.1712, 2014.
A. V. Kelarev dan S. J. Quinn, “Directed graph and combinatorial properties of semigroups,” J. Algebra, pp. 251, 16-22., 2002.
I. Chakrabarty, S. Ghosh dan M. K. Sen, “Undirected power graphs of semigroups,” Semigroup Forum, pp. doi: 10.1007/s00233-008-9132-y, 2009.
P. J. Camerona dan S. Ghosh, “The power graph of a finite group,” Discrete Mathematics, pp. 311, 1220-1222. doi:10.1016/j.disc.2010.02.011, 2011.
D. Alireza, E. Ahmad dan J. Abbas, “Some Results on the Power Graphs of Finite Groups,” Science Asia, pp. 41,73-78. doi: 10.2306/scienceasia1513-1874.2015.41.073, 2015.
P. J. Camerona, H. Guerra dan S. Jurina, “The Power Graph of a Torsion-Free Groups,” J Algebr Comb, pp. 49, 83–98. https://doi.org/10.1007/s10801-018-0819-1, 2019.
F. Ali, S. Fatima dan W. Wang, “On the power graphs of certain finite groups,” Linear and Multilinear Algebra, p. https://doi.org/10.1080/03081087.2020.1856028, 2020.
B. N. Al-Hasanat dan A. S. Al-Hasanat, “Order Graph: A new representation of finite groups,” International Journal of Mathematics and Computer Science, pp. 14(4), 809–819., 2019.
A. Sehgal, Manjeet dan D. Singh, “Co-prime order graphs of finite Abelian groups and dihedral groups,” Journal of Mahematics and Computer Science, pp. 23, 196-202. DOI:10.22436/jmcs.023.03.03, 2021.
S. U. Rehman, A. Q. Baig, M. Imran dan Z. Khan, “Order divisor graphs of finite groups,” Sciendo, pp. 26(3), 29-40. DOI: https://doi.org/10.2478/auom-2018-0031, 2018.
J. A. Gallian, Contemporary Abstract Algebra 9th Edition, Boston: Cengage Learning , 2017.
J. A. Bondy dan U. S. R. Murty, Graduate text in mathematics: graph theory, New York: Springer, 2008.
K. Koh, F. Dong, K. L. Ng dan E. G. Tay, Graph Theory, Singapore: World Scientific, 2015.
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
This work is licensed under a Creative Commons Attribution-ShareAlike 2.0 Generic License.