Peramalan jumlah kedatangan wisatawan mancanegara ke bali menggunakan metode hibrida SSA-WFTS

Authors

  • Nadia Uli Clarissa Universitas Sebelas Maret
  • Winita Sulandari Universitas Sebelas Maret
  • Respatiwulan Respatiwulan

DOI:

https://doi.org/10.26555/konvergensi.v8i1.21460

Keywords:

Singular Spectrum Analysis, Weighted Fuzzy Time Series, Peramalan

Abstract

Sektor pariwisata di Indonesia memiliki peran penting dalam meningkatkan devisa negara, pendapatan daerah, pengembangan wilayah, dan penciptaan lapangan tenaga kerja. Salah satu provinsi di Indonesia dengan jumlah kunjungan wisatawan mancanegara terbanyak yaitu provinsi Bali. Perlunya peramalan kunjungan wisatawan mancanegara ke Bali yang dapat dijadikan acuan oleh Pemerintah untuk menetapkan strategi dalam memperbaiki kualitas pariwisata di Bali. Metode yang digunakan untuk meramalkan yaitu metode hibrida Singular Spectrum Analysis (SSA) – Weighted Fuzzy Time Series (WFTS). Pemodelan SSA dilakukan untuk menganalisis komponen linear, lalu nilai residu dari model SSA dimodelkan dengan WFTS. Peramalan dilakukan dengan 4 metode yaitu, SSA dengan R-forecasting, SSA-WFTS dengan metode Chen, Yu, Cheng (α = 0,9), dan Lee (c = 1,1). Keempat metode ini akan dibandingkan untuk memperoleh model terbaik. Hasil peramalan diperoleh nilai MAPE sebesar 14,515% untuk model SSA R-forecasting, 9,029% untuk model SSA-WFTS metode Chen, 9,067% untuk model SSA-WFTS metode Yu, 9,125% untuk model SSA-WFTS metode Cheng (α = 0,9), dan 9,028% untuk model SSA-WFTS metode Lee (c = 1,1). Model terbaik diperoleh dengan pemodelan hibrida SSA-WFTS metode Chen dengan nilai MAPE terkecil dibanding model lainnya.

References

A. Hutauruk and S. Harto, "Pengaruh Kunjungan Wisatawan Asing terhadap Ekonomi Pariwisata Indonesia.," Jurnal Online Mahasiswa Fakultas Ilmu Sosial dan Ilmu Politik Universitas Riau, vol. 4, no. 2, pp. 1-14, 2017.

U. Nations, International Recommendations for Tourism Statistics 2008, New York: United Nations Publication, 2010.

T. A. Secretariat, ASEAN STATISTICAL YEARBOOK 2020, Jakarta: Association of Southeast Asian Nations (ASEAN) 2020, 2020.

L. U. Calderwood and M. Soshkin, "The Travel & Tourism Competitiveness Report 2019," World Economic Forum’s Platform, Geneva, 2019.

B. S. Distribusi, "STATISTIK WISATAWAN MANCANEGARA KE BALI 2018," BPS Provinsi Bali, Despansar, 2019.

N. Golyandina and A. Zhigljavsky, Singular Spectrum Analysis for Time Series, vol. 120, Berlin: Springer, 2013.

H. Khaeri, E. Yulian and G. Darmawan, "Penerapan Metode Singular Spectrum Analysis (SSA) pada Peramalan Jumlah Penumpang Kereta Api di Indonesia Tahun 2017," Jurnal Euclid, vol. 5, no. 1, pp. 8-19, 2017.

R. S. K. Siregar, D. Prariesa and G. Darmawan, "Aplikasi Metode Singular Spectral Analysis (SSA) dalam Peramalan Pertumbuhan Ekonomi Indonesia Tahun 2017," Jurnal Matematika "MANTIK", vol. 3, no. 1, pp. 5-12, 2017.

M. Sari, I. W. Sumarjaya and M. Susilawati, "Peramalan Jumlah Kunjungan Wisatawan Mancanegara ke Bali Menggunakan Metode Singular Spectrum Analysis," E-Jurnal Matematika, vol. 8, no. 4, pp. 303-308, 2019.

G. Zhang, "Time series forecasting using a hyrid ARIMA and neural network model," Neurocomputing, vol. 50, pp. 159-175, 2001.

Q. Song and B. Chissom, "Fuzzy time series and its model," Fuzzy Sets and System, vol. 54, no. 3, pp. 269-277, 1993.

S. Chen, "Forecasting enrollments based on fuzzy time series," Fuzzy Sets and System , vol. 81, pp. 311-319, 1996.

H. Yu, "Weighted fuzzy time series models for TAIEX forecasting," Physics A, vol. 349, no. 2, pp. 609-624, 2005.

M. Lee and Suhartono, "A novel weighted fuzzy time series model for forecasting seasonal data," Proceeding the 2nd International Conference on Mathematical Sciences, pp. 332-340, 2010.

W. Sulandari, Subanar, M. Lee and P. Rodrigues, "Indonesia electricity load forecasting using singular spectrum analysis, fuzzy system, and neural networks," Energy, vol. 190, pp. 1-11, 2020.

Subanar and W. Sulandari, "A comparison forecasting methods for trend and seasonal Indonesia tourist arrivals time series," AIP Conference Proceedings, vol. 2329, p. 060012, 2021.

Suhartono and M. H. Lee, "A Hybrid Approach based on Winter’s Model and Weighted Fuzzy Time Series for Forecasting Trend and Seasonal Data," Journal of Mathematics and Statistics, pp. 177-183, 2011.

N. Golyandina, V. Nekrutkin and A. Zhigljavsky, Analysis of Time Series Structure:SSA and Related Techniques, Florida: Chapman & Hall, 2001.

Q. Zhang, B. Wang, B. He, Y. Peng and M. Ren, "Singular Spectrum Analysis and ARIMA Hybrid Model for Annual Runoff Forecasting," Water resources management, vol. 25, no. 11, pp. 2683-2703, 2011.

C. Cheng, T. Chen, H. J. Teoh and C. Chiang, "Fuzzy time-series based on adaptive expectation model for TAIEC forecasting," Expert System with Application, vol. 34, pp. 1126-1132, 2008.

A. A. Ete, M. Fitrianawati and M. T. Arifin, "Forecasting The Number Of Tourist Arrivals To Batam Using The Singular Spectrum Analysis And Arima Methods," Advances in Social Science, Education and Humanities Research, vol. 317, pp. 119-126, 2019.

R. J. Hyndman and A. B. Koehler, "Another look at measures of forecast accuracy," International journal of forecasting, vol. 22, no. 4, pp. 679-688, 2006.

Downloads

Published

2021-04-03

Issue

Section

Articles