Peramalan Data Runtun Waktu Menggunakan Metode Wavelet-VAR

Authors

  • Siti Nur Azizah Matematika, Universitas Ahmad Dahlan
  • Julan Hernadi Matematika, Universitas Ahmad Dahlan

DOI:

https://doi.org/10.26555/konvergensi.v7i2.19603

Keywords:

Trnsformasi Wavelet, Vektor Autoregressive, Denoising

Abstract

Peramalan adalah kegiatan meramalkan kejadian yang akan datang berdasarkan data dari kejadian sebelumnya. Data yang digunakan dalam penelitian ini adalah data deret waktu. Penelitian ini mengembangkan metode peramalan yang menggabungkan penggunaan wavelet dalam vector autoregressive (VAR). Wavelet digunakan sebagai alat denoising sebelum dimasukkan ke dalam persamaan regresi menggunakan vektor autoregresif. Metode ini disebut metode Wavelet-VAR. Dalam implementasinya, data deret waktu ditransformasikan menggunakan transformasi wavelet diskrit (DWT) untuk mendapatkan koefisien perkiraan dan koefisien detail. Selanjutnya noise yang terdapat pada koefisien detail dihilangkan dengan menggunakan metode thresholding tertentu. Melalui inversi transformasi wavelet diskrit (IDWT), data baru bebas noise diperoleh. Selanjutnya data bersih ini digunakan dalam peramalan dengan metode vector autoregressive. Dalam implementasinya, diterapkan data curah hujan di Kabupaten Sleman mulai Desember 2019 hingga April 2020 yang diperoleh dari situs resmi Badan Meteorologi, Klimatologi, dan Geofisika (BMKG). Untuk mengukur kualitas kualitas peramalan digunakan mean square error (MSE). Metode Wavelet-VAR menghasilkan MSE 0,354 sedangkan metode VAR menghasilkan MSE 0,838. Dalam hal ini, metode Wavelet-VAR lebih baik daripada metode VAR.

References

S. Makridakis, S. C. Wheelwright, and V. E. McGee, “Metode dan aplikasi peramalan,†Jakarta: Erlangga, 1999.

I. Daubechies and B. J. Bates, “Ten lectures on wavelets.†Acoustical Society of America, 1993.

T. Ogden, Essential wavelets for statistical applications and data analysis. Springer Science & Business Media, 2012.

D. B. Percival and A. T. Walden, Wavelet methods for time series analysis, vol. 4. Cambridge university press, 2000.

L. Debnath and F. A. Shah, Wavelet transforms and their applications. Springer, 2002.

D. F. Walnut, An introduction to wavelet analysis. Springer Science & Business Media, 2013.

D. L. Donoho and J. M. Johnstone, “Ideal spatial adaptation by wavelet shrinkage,†Biometrika, vol. 81, no. 3, pp. 425–455, 1994.

D. Sundararajan, Discrete wavelet transform: a signal processing approach. John Wiley & Sons, 2016.

D. N. Gujarati, D. C. Porter, and S. Gunasekar, Basic econometrics. Tata McGraw-Hill Education, 2012.

J. Dinardo, J. Johnston, and J. Johnston, “Econometric methods,†Forth Ed. McGraw-Hill Companies, Inc, pp. 204–326, 1997.

A. Chuang, “Time series analysis: univariate and multivariate methods.†Taylor & Francis, 1991.

Downloads

Published

2020-10-16

Issue

Section

Articles