PENERAPAN DATA MINING UNTUK KLASIFIKASI PREDIKSI PENYAKIT ISPA (Infeksi Saluran Pernapasan Akut) DENGAN ALGORITMA DECISION TREE (ID3)
DOI:
https://doi.org/10.12928/jstie.v2i1.2613Abstract
Pengolahan data yang disimpan tidak hanya bisa disimpan saja, tetapi bisa dijadikan suatu representasi pengetahuan dikemudian hari. Data pasien yang terkena Ispa digunakan untuk merepresentasikan pengetahuan dari gejala penyakit ispa sebelumnya, yang mana diderita oleh pasien di klinik pengobatan Dharma Husada. Dengan demikian, perlu adanya suatu klasifikasi penyakit yang paling banyak diderita pasien di klinik Dharma Husada.
Klasifikasi pada penelitian ini bertujuan untuk membentuk suatu model pohon keputusan untuk memprediksi penyakit pasien dan melihat variable yang paling mempengaruhi penyakit pasien dengan kategori ispa. Obyek penelitian ini adalah hasil data pasien, status imunisasi, jenis kelamin, usia dan kriteria gizi pada tahun 2012 yaitu sebanyak 200 pasien terkena ispa. Data yang digunakan adalah data pemeriksaan pasien oleh dokter untuk kemudian dapat dinyatakan terkena penyakit ispa.
Variable bebas atau variable input (predictor) pada penelitian ini adalah pemeriksaan awal pasien yaitu meliputi kategori status imuniasasi, jenis kelamin, usia dan kriteria gizi. Sedangkan kondisi pasien yang diprediksi yaitu terkena ispa atau tidak merupakan output (variable tidak bebas). Tools yang digunakan untuk membuat aplikasi penerapan data mining adalah dengan VB.Net dengan pengolahan database SQL server. Pengujian terhadap pembentukan pohon keputusan menggunakan uji Chi Square untuk mengetahui nilai hipotesis hitung yang dibandingkan dengan tabel chi square. Dari pohon keputusan yang terbentuk dari 200 data pasien maka dapat diketahui bahwa jenis kelamin tidak berpengaruh terhadap penyakit ispa.
Kata kunci : Pohon Keputusan, Decision Tree, Chi Square, Penyakit Ispa.
References
Wahyudin.2009.Metode Iterative Dichotomizer 3 (ID3) Untuk Penyeleksian Penerimaan Mahasiswa Baru. Program Pendidikan Ilmu Komputer. Universitas Pendidikan Indonesia.
Prawitasari Anita. Klasifikasi Prediksi Penyakit DBD dan Tipes dengan Algoritma Decision Tree. 2011. Jurusan system informasi. Universitas Gunadharma.
Berry, Michael J.A. dan Gordon S. Linoff. 2004. Data mining techniques for marketing, sales, customer relationship management. Second edition. Wiley publishing,Inc.
Kusrini dan Emha Taufiq Lutfi.2009. Algorima Data Mining. Yogyakarta; Andi Offset.
Gambbeta, Windy. 2012. Pohon Keputusan (Decision Tree). Departemen Teknik Informatika. Institute Teknologi Bandung. Bandung.
Downloads
Published
Issue
Section
License
License and Copyright Agreement
In submitting the manuscript to the journal, the authors certify that:
- They are authorized by their co-authors to enter into these arrangements.
- The work described has not been formally published before, except in the form of an abstract or as part of a published lecture, review, thesis, or overlay journal. Please also carefully read Journal Posting Your Article Policy.
- The work is not under consideration for publication elsewhere.
- The work has been approved by all the author(s) and by the responsible authorities – tacitly or explicitly – of the institutes where the work has been carried out.
- They secure the right to reproduce any material that has already been published or copyrighted elsewhere.
- They agree to the following license and copyright agreement.
Copyright
Authors who publish with Jurnal Sarjana Teknik Informatika agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY-SA 4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.