Prediksi Dini Penyakit Preeklamsia Menggunakan Algoritma C4.5

Authors

DOI:

https://doi.org/10.12928/jstie.v10i3.24187

Keywords:

Data Mining C4.5, Cross Validation, Confusion Matrix, Preeklamsia

Abstract

Berdasarkan data Kemenkes RI tahun 2021menunjukkan angka kematian ibu tinggi yaitu lebih dari 4000 kasus setiap tahunnya dimana salah satu penyebabnya adalah preeklamsia. Pencegahan preeklamsia cukup sulit dikarenakan gejala utamanya belum diketahui pasti. Namun teknologi dapat digunakan untuk membantu pendeteksian preeklamsia. Penelitian ini bertujuan mendeteksi preeklamsia pada ibu hamil menggunakan algoritma C4.5. Tahapan pertama penelitian ini adalah melakukan studi literatur. Kemudian mengumpulkan data di RSKIA Sadewa Yogyakarta dan mengolahnya melalui tahapan preprocessing dengan melakukan seleksi data, transformasi data, membagi data menggunakan 10-fold cross validation. Selanjutnya data dianalisis menggunakan algorima C4.5 dan diimplementasikan ke dalam sistem. Penenelitian ini menggunakan data sebanyak 870 data dengan atribut pendidikan, pekerjaan, usia, usia kehamilan, tekanan darah, berat badan, jenis kehamilan, jumlah kelahiran, riwayat aborsi, riwayat persalinan, riwayat penyakit, dan proteinuria serta kelas klasifikasi negatif, preeklamsia ringan, dan preeklamsia berat. Penelitian ini menghasilkan sebuah sistem prediksi dini penyakit preeklamsia pada ibu hamil. Hasil pengujian menggunakan confusion matrix menunjukkan bahwa sistem prediksi mendapatkan nilai akurasi 81,38%, precision 78,37%, recall 79,69%, dan f1-score 78,73%. Hasil pengujian black box menunjukkan fungsi sistem dapat digunakan dengan baik.

References

Kemenkes, "Pusat Data dan Informasi Kementerian Kesehatan RI," 2021.

N. Muhani and Besral, "Pre-eklampsia Berat dan Kematian Ibu," Jurnal Kesehatan Masyarakat Nasional, pp. Vol. 10, No. 2, 2015.

V. B. Kusnandar, "10 Provinsi dengan Angka Kematian Ibu Terbanyak pada 2020," 22 12 2021.

R. N. Reny, "PENERAPAN METODE CHAID ( CHI-SQUARED AUTOMATIC INTERACTION DETECTION ) DAN CART ( CLASSIFICATION AND REGRESSION TREES )," pp. 35-73, 2018.

A. Muzakir and W. R. Anisa, "Model Data Mining sebagai Prediksi Penyakit Hipertensi Kehamilan dengan Teknik Tree Model Data Mining sebagai Prediksi Penyakit Hipertensi Kehamilan dengan teknik Decision Tree," 2016.

P. Kiondo, "Risk Factors for Pre-eclampsia in Mulago Hospital, Kampala, Uganda," Tropical Medicine and International Health, pp. 480-487, 2012.

M. Klebanoff, P. Shiono and G. Rhoads, "Outcomes of Pregnancy in National Sample of Resident Physicians," N Engl J Med, p. 323, 1990.

T. Asrianti, "Faktor Risiko Kejadian Preeklampsia pada Ibu Melahirkan di RSIA Siti Fatimah Makasar," Skripsi Universitas Hasanudin Makasar, 2009.

N. Istifadah, Mussia and N. Riska Rahmawati, "GAMBARAN FAKTOR PENYEBAB PRE EKLAMPSIA/ EKLAMPSIA PADA IBU HAMIL DI PUSKESMAS KALISAT KABUPATEN JEMBER," JURNAL KESEHATAN dr. SOEBANDI, pp. 176-183, 2014.

S. Sukaesih, "Faktor-Faktor yang Berhubungan dengan Pengetahuan Ibu Hamil Mengenai Tanda Bahaya dalam Kehamilan di Puskesmas Tegal Selatan Kota Tegal Tahun 2012," Skripsi Program Sarja Kesehatan Masyarakat Universitas Indonesia, 2000.

P. Pitria, "ANALISIS SENTIMEN PENGGUNA TWITTER PADA AKUN RESMI SAMSUNG INDONESIA DENGAN MENGGUNAKAN NAIVE BAYES," Sarjana Institut, 2014.

M. Ali, D.-H. Son, K. Sang-Hee and S.-R. Nam, "An Accurate CT Saturation Classification Using a Deep Learning Approach Based on Unsupervised Feature Extraction and Supervised Fine-Tuning Strategy," Energies, 2017.

Downloads

Published

30-10-2022

Issue

Section

Articles