Penerapan Text Mining Pengelompokkan Judul Kerja Praktek Menggunakan Metode K-Means Clustering dengan Cosine Similarity

Authors

  • Ika Kurnia Saputri Universitas Ahmad Dahlan
  • Tedy Setiadi Universitas Ahmad Dahlan
  • Lisna Zahrotun Universitas Ahmad Dahlan

DOI:

https://doi.org/10.12928/jstie.v6i3.15257

Keywords:

Text Mining, K-Means Clustering, Cosine Similarity

Abstract

Kerja Praktek adalah kegiatan mahasiswa yang dilakukan di masyarakat maupun di perusahaan atau instansi untuk mengaplikasikan ilmu yang diperoleh dan melihat relevansinya di masyarakat maupun melalui jalur pengembangan diri dengan mendalami bidang ilmu tertentu dan aplikasinya. Dalam pelaksanaanya, tidak sedikit mahasiswa bingung menentukan sebuah instansi, perusahaan ataupun tempat lain untuk dijadikan tempat Kerja Praktek. Oleh karena itu, perlu adanya pengelompokkan Judul Kerja Praktek sehingga dapat menjadi salah satu referensi pengetahuan bagi mahasiswa untuk mengetahui pola kelompok judul kerja praktek yang ada. Dalam pengelompokkan tersebut, dapat menggunakan metode Text Mining K-Means Clustering dengan Cosine Similarity untuk dapat mengelompokkan judul kerja praktek. Penelitian ini dilakukan untuk mengkaji tentang algoritma K-Means Clustering dengan Cosine Similarity dan mengimplementasikan algoritma K-Means Clustering dengan Cosine Similarity dengan melakukan tahapan tokenizing, filtering dan stemming sehingga pada akhirnya akan didapatkan cluster-cluster judul kerja praktek. Data yang digunakan adalah data judul kerja praktek Teknik Informatika Universitas Ahmad Dahlan sebanyak 355 data. Hasil pengujian dilakukan uji purity sebanyak 5 kali percobaan, dengan mengkombinasikan parameter M yang berbeda-beda sebagai titik pusat cluster diperoleh nilai terbaik sebesar 0,85 dengan kombinasi M=6 yang artinya semakin mendekati 1 mengindikasikan bahwa semakin banyak dokumen yang berhasil dikelompokkan dengan benar.

Author Biographies

Ika Kurnia Saputri, Universitas Ahmad Dahlan

Teknik Informatika

Tedy Setiadi, Universitas Ahmad Dahlan

Teknik Informatika

Lisna Zahrotun, Universitas Ahmad Dahlan

Teknik Informatika

References

Kurniawan, B., Effendi, S., sitompul, O.S., 2012, Klasifikasi Konten Berita Dengan Metode Text Mining, Jurnal Dunia Teknologi Informasi, Vol.1, No. 1, Hal.14-19.

Alfina, T., Santosa, B., Barakbah, A.R., 2012, Analisa Perbandingan Metode Hierarchical Clustering, K-Means Dan Gabungan Keduanya Dalam Cluter Data (Studi Kasus : Problem Kerja Praktek Jurusan Teknik Industri Its), Jurnal Teknik ITS, vol.1, ISSN: 2301-9271, September 2012.

Imbar, R.V., Adelia., Ayub, M., Rehatta, A., 2014, Implementasi Cosine Similarity dan Algoritma Smith-Waterman untuk Mendeteksi Kemiripan Teks, Jurnal Informatika, Vol. 10, nomor 1, Juni 2014:31-42.

Prilianti, K.R., Wijaya, H., 2014, Aplikasi Text Mining Untuk Automasi Penentuan Tren Topik skripsi dengan Metode K-Means Clustering, Jurnal Cybermatika, Vol. 2, No. 1, juni 2014.

Han, J., Kamber, M., Pei, J., 2006, Data Mining: Concepts and Techniques. Morgan Kaufmann.

Prasetyo, E., 2014, Data Mining-Mengolah Data Menjadi Informasi Menggunakan Matlab. Yogyakarta.Andi.

Downloads

Published

01-11-2018

Issue

Section

Articles