Prediksi Laju Pertumbuhan Penduduk Di Kabupaten Sleman Dengan Metode Adaptive Neuro-Fuzzy Inference System (Anfis) Dan Metode Sugeno
DOI:
https://doi.org/10.12928/jstie.v6i3.15248Keywords:
Prediksi Laju Penduduk, metode anfis dan sugeno, Kabupaten SlemanAbstract
Pemerintah kabupaten Sleman hanya mendapatkan data penduduk di Kabupaten Sleman dilakukan hanya saat sensus penduduk saja, dimana ketika pemilu dan program pemerintah saja. Dalam sistem prediksi laju pertumbuhan penduduk menggunakan metodologi adaptive neurofuzzy infrence system (anfis) dan metode sugeno. Metode adaptive neuro-fuzzy infrence system (anfis) dimulai dengan tahap menentukan lapisan 1, lapisan 2, lapisan 3, lapisan 4, lapisan 5. tahap perancangan sistem, tahap implementasi/coding, dan tahap pengujian sistem. Sistem diuji dengan 2 metode yaitu Black Box Test dan Alpha Test. Hasil penelitian ini menghasilkan sistem prediksi Laju penduduk. Hasil perhitunan anfis untuk mengetahui perbandingan data sensus dan data hasil hitung anfis dan Hasil prediksi pada priode selanjutnya yang dihitung menggunakan metode sugeno dan metode geometri. Data tersebut menghasilkan perbandingan data sensus dan data hasil hitung anfis sebesar 0,44%, dengan hasil pengujian prediksi metode sugeno naik sebesar 16,10% pada tahun 2020 dapat diketahui sangat meningkat dan hasil pengujian dengan metode geometri sebesar 1,65% dapat diketahui laju pertumbuhan penduduk setiap tahunya. Dan kesimpulan dapat diambil perbandingan hasil sensus dengan hasil hitung anfis meningkat, sedangkan mengunakan metode sugeno lebih baik untuk memprediksi laju pertumbuhan penduduk dan dengan metodemgeometri dapat diketahui prediksi laju pertumbuhan setiap tahunnya.References
Dewi dan Himawati.2015. Prediksi Tingkat Pengangguran Menggunakan Adaptif Neuro Fuzzy Inference System (ANFIS). Malang: Konferensi Nasional Sistem & Informatika STMIK STIKOM Bali.
Fathansyah. 2004. Sistem Basis Data. Bandung: Informatika.
Pressman, Roger. 2012. Rekayasa Perangkat Lunak. Yogyakarta: Andi
Pujianta, Ardi. 2015. Fuzzy Logic. Yogyakarta: Ardi
Rahman dkk. 2012 . Prakiraan Beban Puncak Jangka Panjang Pada Sistem
Kelistrikan Indonesia Menggunakan Algoritma Adaptive Neuro-Fuzzy Inference System. Jurnal ELECTRANS, VOL.11, NO.2
Downloads
Published
Issue
Section
License
License and Copyright Agreement
In submitting the manuscript to the journal, the authors certify that:
- They are authorized by their co-authors to enter into these arrangements.
- The work described has not been formally published before, except in the form of an abstract or as part of a published lecture, review, thesis, or overlay journal. Please also carefully read Journal Posting Your Article Policy.
- The work is not under consideration for publication elsewhere.
- The work has been approved by all the author(s) and by the responsible authorities – tacitly or explicitly – of the institutes where the work has been carried out.
- They secure the right to reproduce any material that has already been published or copyrighted elsewhere.
- They agree to the following license and copyright agreement.
Copyright
Authors who publish with Jurnal Sarjana Teknik Informatika agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY-SA 4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.