Kemampuan Pemecahan Masalah Materi Listrik Dinamis pada Pembelajaran Guided Inquiry Berbantuan PhET pada Mahasiswa S1 Pendidikan Fisika

Authors

  • Cicyn Riantoni Pascasarjana Pendidikan Fisika Universitas Negeri Malang
  • Lia Yuliati Pascasarjana Pendidikan Fisika Universitas Negeri Malang
  • Nandang Mufti Pascasarjana Pendidikan Fisika Universitas Negeri Malang

DOI:

https://doi.org/10.12928/jrkpf.v4i1.6468

Abstract

Tujuan Penelitian ini adalah untuk mengetahui kemampuan pemecahan masalah mahasiswa setelah dibelajarkan dengan pembelajaran guided inquiry berbantuan PhET. Penelitian ini menggunakan pendekatan mixed method dengan desain embeded eksperimental model. Subjek penelitian terdiri dari 35 mahasiswa pendidikan fisika Universitas Negeri Jambi yang sedang menempuh mata kuliah Fisika Dasar II. Hasil penelitian menunjukkan bahwa terjadi peningkatan skor kemampuan pemecahan masalah mahasiswa setelah dibelajarkan dengan pembelajaran guided inquiry berbantuan PhET dengan N-gain dalam kategori sedang dan effect size dalam kategori kuat. Jika dilihat dari daya beda pretest dan posttest didapatkan nilai t sebesar 12,48 dengan signifikansi 0,000. Hasil ini menunjukkan kemampuan pemecahan masalah sebelum diajarkan dan setelah diajarkan guided inquiry berbantuan PhET berbeda secara signifikan dengan nilai posttest lebih baik dari pretest.

 

The aim of this study is to know the ability of student's problem solving after studied with guided inquiry and PhET simulations. This study used mixed method with a design of the embedded experimental model to get result of research. The subjects are 35 students of physics education in Jambi University who learning basic physics. The result shows that scores of students problem-solving ability increase after learned with guided inquiry assisted PhET with N-Gain in the medium category and the effect size in the high category. If viewed from different pretest and posttest show t values 12,48 and 0,000 significance. These results indicate that skill of problem-solving before and after learned with collaborate guided inquiry and PhET significantly different with the value of posttest is better than the pretest.

References

Vreeland, P, Analyzing Simple Circuit, The Physics Teacher, Vol. 40, No. 99, 2002, pp. 99-100.

Stetetzer, M.R., Kampen, P.V., Shaffer, P. S & McDermott, L. C, New Insights Into Student Understanding Of Complete Circuits And The Conservation Of Current. American Journal of Physics (Am.J.Phys), Vol. 81, No. 2, 2013, pp. 134-143.

Kock, Z., Taconis, R., Bolhuis, S & Graveimejer, K, Creating A Culture Of Inquiry In The Classroom While Fostering An Understanding Of Theoretical Concepts In Direct Current Electric Circuits: A Balanced Approach, International Journal of Science and Mathematics Education (IJMSE), Vol. 13, 2014, pp. 45-69.

Ryan, Q, Computer Problem-Solving Coaches For Introductory Physics: Design And Usability Studies. Phys. Rev. ST. Phys. Educ. Res, Vol. 12, No. 010105, 2016

Docktor, J. L., Strand, N. E., Mestre, J.P & Ross, B. H, Conceptual Problem Solving In High School Physics. Phys. Rev. ST. Phys. Educ. Res, Vol. 11, No. 020106, 2015.

Vlassi dan Karaliota, The Comparison Between Guided Inquiry And Traditional Teaching Method. A Case Study For The Teaching Of The Structure Of Matter To 8th Grade Greek Students. Social and Behavioral Sciences, Vol. 93, 2013 pp. 494 – 497.

Bilgin, I, The Effects Of Guided Inquiry Instruction Incorporating A Cooperative Learning Approach On University Students’ Achievement Of Acid And Bases Concepts And Attitude Toward Guided Inquiry Instruction. Scientific Research and Essay, Vol. 4, No. 10, 2009, pp. 1038-1046.

Wenning, C.J, Experimental Inquiry In Introductory Physics Course. J. Phys. Tchr. Educ, Vol. 6, No. 2, 2011, pp. 2-7.

Wieman, C.E., Adam, W. K., Loeblin, P & Perkins, K. K, Teaching Physics Sing Simulations Phet Simulations. The Physics Teacher, Vol. 8, 2010, pp. 225-227.

Martinez, G., Naranjo, F. L., Perez, A. L & Suero, M. I, Comparative Study Of The Effectiveness Of Three Learning Environments: Hyper-Realistic Virtual Simulations, Traditional Schematic Simulations And Traditional Laboratory. Phys. Rev. ST. Phys. Educ. Res., Vol 7, No. 020111, 2011.

Zacharia, C.Z & Jong, D.T, One Speciï¬c Advantage For Virtual Laboratories That May Support The Acquisition Of Conceptual Knowledge Is That Reality Can Be Adapted To Serve The Learning Process. Reality Can Be Simpliï¬ed By Taking Out Details. Cognition and Instruction, Vol. 32. No. 2, 2014, pp. 101-158.

Ceberio, M., Almudi, J.S., Franco, a, Design and Application of Interactive Simulations in Problem Solving in University-Level Physics Education. J Sci Educ Technol, DOI 10.1007/s10956-016-9615-7, 2016

Finkelstein, N.D., Adam, W. K., Keller, C. J., Kohl, P. B., Perkins, K. K.,Podolefsky, N. S., Reid, S, When Learning About The Real World Is Better Done Virtually: A Study Of Substituting Computer Simulations For Laboratory Equipment. Phys. Rev. ST. Phys. Educ. Res, Vol 1, No. 010103, 2005.

Engelhardt,P.V dan Beichner, J.R, Students’ Understanding Of Direct Current Resistive Electrical Circuits. American Journal Of Physics., Vol. 72, No. 1, 2004, pp. 98-115.

Docktor, J.L., Dornfeld, J., Frodermann, E., Heller, K., Hsu, L., Jackson, K.A., Mason, A., Qing X. Ryan and Yang, J, Assessing Student Written Problem Solutions: A Problem-Solving Rubric With Application To Introductory Physics. Phys. Rev. ST. Phys. Educ. Res, Vol. 12, No. 010130, 2016.

Docktor & Mestre, Synthesis Of Discipline-Based Education Research In Physics. Phys. Rev. ST. Phys. Educ. Res, Vol. 10, No. 020119, 2014.

Urhahne,D, Role of the Teacher in Computer-supported Collaborative Inquiry Learning. International Journal of Science Education (IJSE), Vol. 32, No. 2, 2010, pp. 221-243.

Ogilvie, C.A, Changes in Students Problem Solving strategies in a Course That Includes Context –Rich , Multifaceted Problems. Phys. Rev. ST. Phys. Educ. Res, Vol 5, No. 020102, 2009.

Walsh, L., Howard, R and Bowe, B, Phenomenographic Study Of Students’ Problem Solving Approaches In Physics. Phys. Rev. ST. Phys. Educ. Res, Vol. 8, No. 010123, 2007.

Galili, I and Goihbarg, E, Energy transfer in electrical circuits: A qualitative account, American Journal Of Physics, Vol. 73, No. 2, 2005, pp. 141-144.

Redish, E, Changing Student Ways Of Knowing: What Should Our Students Learn In A Physics Class, 2005.

Rosengrant, D., Heuvelen, A and Etkina, E, Do Students Use And Understand Free-Body Diagrams?. Phys. Rev. ST. Phys. Educ. Res, Vol. 5, No, 010108, 2009.

Hull, M.M ., Kuo, E., Gupta, A & Elby, A, Problem-Solving Rubrics Revisited: Attending To The Blending Of Informal Conceptual And Formal Mathematical Reasoning, Phys. Rev. ST. Phys. Educ. Res, Vol. 9, No. 010105, 2013.

Lustick, D. The failure of Inquiry: Preparing Science Teachers with an Authentic Investigation, Vol.20, 2009, pp. 583-604.

Smithenry, D.W, Integrating Guided Inquiry into a Traditional Chemistry Curricular Framework. International journal of science education. Vol. 32, No. 13, 2010, pp. 1689-1714.

Bell, T., Urhahne, D., Schanze, S., Plouzhner, R, Collaborative Inquiry Learning: Models, Tools, And Challenges. International Journal of Science Education. Vol. 32, No. 3, 2010, pp. 349-377.

Akerson, L.V., Hanson, D. L., Cullen, T.A, The Influence of Guided Inquiry and Explicit Instruction on K–6 Teachers’ Views of Nature of Science. J Sci Teacher Educ, Vol. 18, 2007, pp. 751–772.

Furtak, E.M, The Problem with Answer : An Exploration of Guided Scientific Inquiry Teaching, Vol. 90, No. 3, 2006, pp. 453-467.

Lynn, H.B, Guided Inquiry Using the 5E Instructional Model with High School Physics, M.Sc, Thesis, Montana State University, Bozemen, Montana, 2012.

Capps, D.E & Crawford, B, Inquiry based Instruction and Teaching About Nature of Science : Ae The Happening, J Sci Teacher Educ, 2012.

Perkins,K,. Adam, W., Dubson, M., Finkeilstein, N., Reid, S., Wieman, C, Lemaster, R, PhET: Interactive Simulations for Teaching and Learning Physics. The Physics Teacher. Vol. 44, 2006, pp. 18-23.

Moore, E.B., Herzog, T. A & Perkins, K. K, Interactive Simulations As Implicit Support For Guided-Inquiry. Chem. Educ. Res. Pract, Vol. 14, 2013, pp. 257-268.

Hull, M.M ., Kuo, E., Gupta, A & Elby, A, Problem-Solving Rubrics Revisited: Attending To The Blending Of Informal Conceptual And Formal Mathematical Reasoning. Phys. Rev. ST. Phys. Educ. Res., Vol. 9, No. 010105, 2013.

Downloads

Published

2017-04-30

Issue

Section

Articles