Pengaruh penggunaan styrofoam sebagai peredam panas pada atap terhadap suhu ruang

Authors

  • Mutia Hariza Lubis Pendidikan Fisika, Universitas Negeri Semarang
  • Upik Nurbaiti Pendidikan Fisika, Universitas Negeri Semarang
  • Agus Yulianto Pendidikan Fisika, Universitas Negeri Semarang

DOI:

https://doi.org/10.12928/jrkpf.v8i2.21187

Abstract

Abstrak. Penggunaan alumunium sebagai atap banyak digunakan, namun menyebabkan suhu ruang menjadi panas karena konduktivitas termalnya yang tinggi. Penelitian ini bertujuan untuk menganalisis pengaruh styrofoam sebagai peredam panas pada atap terhadap suhu  ruang. Metode penelitian berupa eksperimen dengan variasi ketebalan styrofoam 1,5 cm dan 3,0 cm. Bentuk atap berupa setengah pelana dan berorientasi ke arah utara. Hasil penelitian diperoleh bahwa rata-rata suhu bagian atas atap dari tiga miniatur rumah jauh lebih tinggi dibandingkan dengan suhu bagian bawah atap dan lebih tinggi dibandingkan dengan suhu ruang. Untuk suhu ruang diantara tiga miniatur rumah dengan perlakuan yang berbeda diperoleh urutan suhu ruang paling tinggi ke suhu ruang paling rendah adalah miniatur rumah tanpa menggunakan styrofoam, menggunakan styrofoam 1,5 cm, dan dengan styrofoam 3 cm. Dari hasil yang diperoleh, dapat disimpulkan bahwa penggunaan styrofoam berpengaruh terhadap suhu ruang dan efektif untuk menurunkan suhu ruang. Selain itu, semakin tebal styrofoam yang digunakan, maka semakin banyak panas yang diredam.

Kata kunci: styrofoam, suhu, peredam

 

Abstract. Aluminum is widely used as a roof, but it causes the room temperature to become hot due to its high thermal conductivity. This study aims to analyze the effect of styrofoam as a heat sink on the roof to room temperature. The research method is an experiment with variations in the thickness of styrofoam 1.5 cm and 3.0 cm. The shape of the roof is half- gable and oriented towards the north. The results showed that the average temperature of the top of the roof of the three miniature houses was much higher than the temperature of the bottom of the roof and higher than the room temperature. For the room temperature between the three miniature houses with different treatments, the order of the highest room temperature to the lowest room temperature is the miniature house  without  using  styrofoam, using 1.5 cm styrofoam, and with 3 cm styrofoam. It can be seen that the use of styrofoam affects the room temperature and is effective in reducing the room temperature. In addition, the thicker the styrofoam used, the more heat is dissipated.

Keywords: styrofoam, temperature, damper

References

Rocklov, J., Barnett, A.G. & Woodward, A. On the estimation of heat-intensity and heat-duration effects in time series models of temperature-related mortality in Stockholm, Sweden. Environ Health 11, 23 (2012). https://doi.org/10.1186/1476-069X-11-23.

Sweetser, S. M. Roofing for historic buildings. Dept. of the Interior.1978.

Pacewska, B., Kluk-Płoskońska, O. & Szychowski, D. Influence of aluminium precursor on physico-chemical properties of aluminium hydroxides and oxides Part II. Al(ClO4)3·9H2O. J Therm Anal Calorim 86, 751–760 (2006). https://doi.org/10.1007/s10973-005-7377-1.

Nurlaela. Respon Spektral Terhadap Suatu Objek. Universitas Negeri Malang.2004.

Abdessalam, M. Climatiser dans les DOM, guide pratique pour le tertiaire. Vol. 4. 1998.

Garde, F. Validation et développement d'un modèle thermo-aéraulique de bâtiments en climatisation passive et active: intégration multimodèle de systèmes (Doctoral dissertation, La Réunion). 1997.

H. Vogg and L. Stieglitz, “Thermal behavior of PCDD/PCDF in fly ash from municipal incinerators,†Chemosphere, vol. 15, no. 9–12, pp. 1373–1378, Jan. 1986, doi: 10.1016/0045-6535(86)90412-1.

C. Grimwood, “Complaints about poor sound insulation between dwellings in england and wales,†Appl. Acoust., vol. 52, no. 3–4, pp. 211–223, Nov. 1997, doi: 10.1016/S0003-682X(97)00027-3.

K. A. Al-Sallal, “Comparison between polystyrene and fiberglass roof insulation in warm and cold climates,†Renew. Energy, vol. 28, no. 4, pp. 603–611, 2003, doi: 10.1016/S0960-1481(02)00065-4.

T. U. J. Ganiron, “Effect of Thermoplastic as Fine Aggregate to Concrete Mixture,†Int. J. Adv. Sci. Technol., vol. 62, pp. 31–42, 2014, doi: 10.14257/ijast.2014.62.03.

T. U. Ganiron Jr, “An Investigation of Moisture Performance of Sawdust and Banana Peels Ply board as Non-Veneer Panelâ€, International Journal of u- and e- Service, Science and Technology, vol. 6, no. 3, 2013.

K. Ulgen, “Experimental and theoretical investigation of effects of wall’s thermophysical properties on time lag and decrement factor,†Energy Build., vol. 34, no. 3, pp. 273–278, 2002, doi: 10.1016/S0378-7788(01)00087-1.

H. Asan and Y. S. Sancaktar, “Effects of Wall’s thermophysical properties on time lag and decrement factor,†Energy Build., vol. 28, no. 2, pp. 159–166, Oct. 1998, doi: 10.1016/S0378-7788(98)00007-3.

Ramadan, K.Z., Al-Khateeb, G.G. & Taamneh, M.M. Mechanical properties of styrofoam-modified asphalt binders. Int. J. Pavement Res. Technol. 13, 205–211 (2020). https://doi.org/10.1007/s42947-019-0102-4

G, Wypych. Handbook of polymers. Elsevier. 2016.

N. F. Marina, “Dampak Lapisan Konstruksi Atap terhadap Suhu Ruang,†Agregat, vol. 5, no. 2, pp. 481–486, 2020.

Mintorogo, D. S., Widigdo, W., & Juniwati, A. Efektivas Styrofoam Sebagai Isolator Panas Pada Atap Miring di Surabaya. 2013.

Downloads

Published

2021-10-29