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1. INTRODUCTION  

The quantity of carbon stored in an ecosystem's above-ground and below-ground biomass is known as its 

carbon stocks [1], [2]. Carbon stocks are significant in addressing climate change due to the ability of plants to 

absorb or retain carbon from the atmosphere and store it in the form of biomass, thereby reducing greenhouse 

gas concentrations [3], [4], [5]. Forests, as one of the largest carbon sinks, play a crucial role in regulating the 

global climate [6], [7]. Therefore, studies related to carbon stock estimation are crucial in supporting 

environmental conservation and climate change mitigation [8]. 

However, a significant challenge in carbon stock studies is the management of complex data and the need 

for efficient analysis methods. The use of technologies such as machine learning (ML) has become increasingly 

popular due to its ability to analyze large-scale data and discover patterns that are difficult to recognize with 

traditional methods [9]. In the context of carbon stocks, many studies have explored the potential of ML to 

ARTICLE INFO  ABSTRACT 

Article history: 

Received December 21. 2024 

Revised January 09, 2025 

Accepted January 14, 2025 
 

 Carbon stocks are critical to climate change mitigation by capturing 

atmospheric carbon and storing it in biomass. However, carbon stock 

estimation faces challenges due to data complexity and the need for efficient 

analytical methods. This study introduces a carbon stock estimation method 

that integrates the XGBoost algorithm with VGG16 feature extraction and 

feature selection techniques to analyze GEE and Drone image datasets. The 

model is evaluated through four scenarios: without feature selection, using 

Information Gain, using Feature Importance, and using Recursive Feature 

Elimination. These scenarios aim to compare feature selection methods to 

identify the best one for processing complex environmental data. The 

experimental results show that RFE significantly outperforms other methods, 

achieving an average RMSE of 6651.62, MAE of 2297.57, and R² of 0.7673. 

These findings underscore the importance of feature selection in optimizing 

model performance, particularly for high-dimensional environmental 

datasets. RFE shows superior accuracy and efficiency by retaining the most 

relevant features but requires more computational resources. For applications 

that prioritize time and resource efficiency, Information Gain or Feature 

Importance can serve as a practical alternative with slightly reduced accuracy. 

This research highlights the value of integrating feature selection techniques 

into machine learning models for environmental data analysis. Future 

research could explore alternative feature extraction methods, combine RFE 

with other approaches, or apply advanced techniques such as Boruta or 

genetic algorithms. These efforts will further refine carbon stock estimation 

models, paving the way for broader applications in environmental data 

analysis. 

Keywords: 

XGBoost; 
VGG16; 

Feature Importance; 

Information Gain; 
RFE 

 

This work is licensed under a Creative Commons Attribution-Share Alike 4.0 

 

Corresponding Author: 

Erwin Budi Setiawan, Telkom University, Jl. Terusan Buah Batu, Bandung 40257, Indonesia  

Email: erwinbudisetiawan@telkomuniversity.ac.id  

https://doi.org/10.26555/jiteki.v10i4.30484
http://journal.uad.ac.id/index.php/JITEKI
http://jiteki@ee.uad.ac.id
https://creativecommons.org/licenses/by-sa/4.0/deed.id
https://creativecommons.org/licenses/by-sa/4.0/deed.id
mailto:erwinbudisetiawan@telkomuniversity.ac.id


ISSN: 2338-3070 Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI) 871 

  Vol. 10, No. 4, December 2024, pp. 870-884 

 

 

Impact of Feature Selection on XGBoost Model with VGG16 Feature Extraction for Carbon Stock Estimation Using 

GEE and Drone Imagery (I Made Darma Cahya Adyatma) 

analyze imagery and other datasets to improve the quality of analysis results. For example, in [10] a study was 

conducted using Landsat 8 OLI data using several regression algorithms such as Support Vector Machine 

(SVM), Random Forest (RF), k-Nearest Neighbors (kNN), and XGBoost and using the Boruta Method feature 

selection method. This research shows that XGBoost gives the best performance R2 = 0,89. Another study [11] 

used the XGBoost model with the Gradient Boosting selection feature to predict Soil Organic Carbon Stock 

(SOCS) on sentinel-1 and sentinel-2 datasets and field data and showed the results of the above model were R2 

= 0/59. In addition, research [12] applies various ML models to predict soil organic carbon content (SOC), one 

of which is XGBoost with a feature selection Genetic Algorithm. This study uses several types of datasets, 

such as soil data and Auxiliary variables, which include 105 predictor variables derived from various sources, 

including 60 variables generated from Landsat 8 and MODIS satellite images. The results of the XGBoost 

model in this study Mean Absolute Error (MAE) = 0.66%, Root Mean Square Error (RMSE) = 0.82%, R2 = 

0/57. 

Many studies have explored the use of XGBoost in environmental data analysis. However, few have 

integrated the advanced feature extraction capabilities of VGG16, especially in the context of complex data 

such as carbon stock estimation. Based on the above research, this study uses XGBoost and VGG16 due to 

their advantages in complex data analysis tasks. VGG16 is used for its ability to extract visual features 

automatically and efficiently, especially on images with complex structures such as satellite and drone images 

[13], [14]. The VGG16 model pre-trained with the ImageNet dataset is used to process and extract important 

features from the image dataset. The obtained features were then utilized as input for the XGBoost model, 

which was selected on the basis of its superior ability to manage high-dimensional regression data. XGBoost's 

ability to utilize these high-dimensional features is critical as it allows the model to make more accurate 

predictions about carbon stocks by utilizing the extracted features. It has built-in features for feature selection, 

which helps to reduce noise, prevent overfitting, and improve model accuracy [12], [15], [16], [17], [18]. In 

addition, previous research shows that XGBoost consistently provides the best results compared to other 

algorithms, such as Random Forest and SVM [10], especially in tasks involving environmental data. As far as 

the researchers know, no studies have explored feature selection on XGBoost models with features extracted 

using the VGG16 architecture, particularly in regression models with imagery datasets related to carbon stock. 

This study not only uses imagery datasets but also integrates field data that measures the total carbon content 

at locations corresponding to the imagery datasets. The field data is used to verify and accurately label the 

imagery dataset, improving the accuracy of the carbon stock estimation model. By combining direct field 

measurements with imagery datasets, the developed model is able to provide more accurate and reliable 

predictions, reflecting actual conditions on the ground. This study evaluates the impact of feature selection 

techniques on the performance of carbon stock estimation models by implementing four different scenarios: a 

baseline model without feature selection, a model that uses Information Gain, a model that uses Feature 

Importance, and a model that will use Recursive Feature Elimination (RFE). The selection of these feature 

selection techniques is based on their potential to improve model accuracy and efficiency. Information Gain is 

used as a feature selection technique to reduce data dimensionality by prioritizing features that have a high 

level of importance and help sort the most informative features [19], [20]. Feature Importance, generated 

through the trained XGBoost model, allocates a score to each feature based on its contribution to model 

accuracy [21]. This technique allows the selection and focus on the most significant features, and later, 

Information Gain and Feature Importance will use Top N Features starting from 500 to 5000. Recursive Feature 

Elimination (RFE) will be implemented to iteratively reduce the number of features, eliminating variables that 

contribute the least to the predictive power of the model and aiming to build a more compact and efficient 

model without compromising its performance. The contribution of the research is to propose the use of 

XGBoost and VGG16 algorithms for feature extraction complemented by the application of feature selection 

techniques to enhance model accuracy. This research also makes an important contribution in the form of a 

comprehensive comparison between various models developed using different feature selection techniques. 

This analysis aims to identify the most effective models for accurately estimating carbon stocks. By conducting 

an in-depth evaluation, we were able to determine the optimal feature selection, which significantly improved 

the accuracy of carbon stock prediction. This method utilizes field data and image data to improve accuracy in 

carbon stock estimation. 

 

2. METHODS  

This research was conducted through several stages, as depicted in the flowchart in Fig. 1. The research 

starts from the data collection stage, where the data consists of field data and imagery data (drone images and 

satellite imagery), which is then continued with the data preprocessing stage. The preprocessing stage includes 

data labeling, data padding, data augmentation, and feature extraction, which will be explained further in the 
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next sub-chapter. After that, the data is processed through 3 different scenarios, namely: Baseline Model, 

Feature Selection with Feature Importance, and Feature Selection with Information Gain. Furthermore, each 

scenario data is separated into training data (80%) and test data (20%) to ensure that the model evaluation can 

measure the scenario performance fairly and consistently.  

Furthermore, the training data is used for XGBoost model training, while the test data is used for model 

performance evaluation. The final stage is to evaluate the results of each scenario. This evaluation aims to 

compare the effectiveness of each feature selection technique in improving the accuracy and prediction 

efficiency of the XGBoost model. These results will provide important insights into the most effective approach 

to data processing. 

 

 
Fig. 1. Research flowchart 

 

2.1. Data Collection   

The data in this study was collected through three main methods, namely field data collection, satellite 

image collection, and data collection using drones. Field data and satellite imagery were collected in Bandung, 

Semarang, Cirebon, and Banten. Furthermore, due to limited resources for drones, drones were taken only in 

Bandung, namely the Telkom University area. 

In the field data collection method, data was obtained directly by sending a team consisting of lecturers 

and trained students to the research site, which was located in an area that received CSR assistance from 

Telkom.  Data collection was carried out in several predetermined zones, where each zone was separated by a 

distance of 50 meters to ensure the accuracy and sustainability of the sampling and data collection process in 

accordance with Indonesian National Standards Carbon stock measurement and accounting – Field 

measurements for land-based carbon accounting.  Each zone was divided into 20×20 meter plots. As depicted 

in Fig. 2 each plot was further divided into several sub-plots based on the following categories: sub-plot ‘A’ 

for seedlings, litter, and understory with a minimum area of 1 m²; sub-plot ‘B’ for saplings with a minimum 

area of 25 m²; sub-plot ‘C’ for poles with a minimum area of 100 m²; and sub-plot ‘D’ for trees with a minimum 

area of 400 m².  

At this stage, seedling and understorey biomass from each plot was collected using the prepared sample 

containers. Samples were weighed to measure the wet weight of approximately ±300 grams and labeled with 

the naming format ZxHxPx. The labeled samples were then sent to the laboratory for carbon content 

measurement using appropriate equipment, such as measurement tools and sample containers. Furthermore, 

during the field data collection, the team recorded the coordinates at the center of each plot. Then these 
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coordinates will be used to retrieve the imagery dataset through Google Earth Engine and show the plot 

condition from these coordinates through satellite images. Drone imagery was taken of the area around the 

measurement plots. The dataset of plot images from Google Earth Engine and drones was processed and 

cropped according to the plot size on the ground. 

 

 
Fig. 2. Example of 20×20meter plot 

 

In addition to field data, the satellite image retrieval method was conducted using the Google Earth Engine 

(GEE) platform. This cloud-based platform that enables efficient geospatial data processing with access to a 

wide range of satellite imagery [22], [23]. This process consists of various steps, namely identifying the study 

area based on the location of the field data collection plot, creating polygon plots according to the size of the 

field data collection plot, and storing the polygon plot data in image format (PNG) as shown in Fig. 3. The 

saved data will then be processed further in the preprocessing stage. 

 

 
Fig. 3. Example of GEE dataset 

 

The final technique is drone image data gathering, which uses a DJI Mavic 2 Pro drone fitted with a 

Hasselblad L1D-20c camera to collect image data. This process produces very high resolution images, which 

were taken from the research location in the Telkom University area. An example of the resulting image can 

be seen in Fig. 4. Through these three methods, the data collected includes field information as well as satellite 

and drone imagery that supports this research. 

 

 
Fig. 4. Example of Drone dataset 

 

2.2. Preprocessing Data 

The datasets that have been collected through various sources are then processed to ensure their quality 

and consistency according to the needs of the model. The first step in preprocessing is data labeling, where 

each image is named with the format: [Location Name]-[Zone Number][Expanse Number][Plot Number]-

[Carbon Value]. This naming was designed to reflect the location of data collection as well as the pre-calculated 

carbon value, making it easier to manage and analyze the data. Table 1 shows an example of data labeling. 
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Table 1. Example of Labeling Dataset 
No File Name 

1 Telkom-Z4H1P1-2826.png 

2 cirebon-S3J2P1-112,09.png 

3 semarang-J3P1-14,76.png 

 

Next, an image cropping process is performed to increase the amount of training data. The plot image 

with an initial size of 20×20 meters was cropped into several smaller sizes, namely 10×10 meters, 5×5 meters, 

and 1×1 meters. For images smaller than 20×20 meters, the carbon value of the plot is adjusted by adding a 

certain percentage based on the cropping size. This approach allows diversification of the dataset while 

maintaining the accuracy of the carbon value information on each plot. 

In the next stage, data padding is applied to ensure consistency of image size without changing the original 

proportions [24]. This process uses Zero-padding [25], [26], which is the addition of a blank black area (RGB: 

0, 0, 0) around the image, allowing all images to reach the standard dimensions of 224×24 pixels required by 

the VGG16 model for feature extraction. This step aims to ensure that all images are of uniform size so that 

they are compatible with the input model while improving efficiency in the training stage [24], [27], [28].  

Data augmentation is carried out using a variety of transformation techniques, including cropping, 

flipping, rotating, and scaling, to further enhance the dataset's quality [29], [30], [31]. These augmentation 

techniques aim to increase the variety of training data without adding new data so that the model becomes more 

robust to variations in the data [32], [33]. In addition, the augmentation process is done without changing the 

data labels to maintain consistency between input and output [34]. By providing more diverse data, 

augmentation also helps reduce the risk of overfitting during the model training process [29], [35]. Through 

these stages, the preprocessing dataset is designed to produce uniform, varied, and high-quality data, thus 

supporting optimal performance in the developed model. This research uses several augmentation techniques, 

including image rotation techniques up to 30 degrees that help the model recognize objects from various angles, 

rescaling techniques by changing the scale of pixel values from [0, 255] to [0, 1] to facilitate the training 

process by simplifying input data, then flipping techniques, both horizontal and vertical flipping to teach the 

model to recognize patterns without depending on the original orientation of the image, increasing its 

generalization ability [29]. 

2.3. Feature Extraction using VGG16 

In the feature extraction stage, the VGG16 model is used to extract features from the input image without 

including a final classification layer and trained using the ImageNet dataset. VGG16 is a pre-trained model 

with deep convolutional neural network architecture [14], [36], [37]. The model is designed to recognize visual 

patterns by utilizing 13 convolutional layers and three pooling layers, making it highly effective in extracting 

hierarchical features from images [13]. The input images are first resized to 224×224 pixels, converted into 

NumPy arrays, and preprocessed to align with the configurations of the VGG16 training environment on 

ImageNet, ensuring that each image is appropriately normalized and ready for feature extraction. The extracted 

features are then flattened into one-dimensional vectors comprising 25,088 features each, ensuring 

compatibility for subsequent processing steps. All features generated from the images in the dataset are used 

in the next stage for feature selection, which is the main focus of this research. Fig. 5 illustrates the architecture 

of the VGG16 model used for feature extraction in this study. 

 

 
Fig. 5. Architecture VGG16 

 

2.4. Feature Selection 

Feature selection is the process of selecting a subset of all the features available in a dataset that are 

deemed most relevant to achieve a particular analysis goal [38], [39]. It helps reduce the dimensionality and 

complexity of the dataset, enabling more efficient and accurate analysis [38], [40], [41]. In feature selection, 
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there are several main categories divided by label information and search strategy. This research will use a 

selection of features from the category of search strategies, which are commonly used to improve the efficiency 

and effectiveness of the model [42]. There are several commonly used feature selection methods to improve 

the efficiency and effectiveness of the model. First, filter methods rely on the general characteristics of the 

training data to select features independent of any predictors. Secondly, wrapper methods involve optimization 

of predictors as part of the selection process, and thirdly, embedded methods combine the advantages of both 

filter and wrapper methods in feature selection [43], [44]. This research uses Information Gain, which is a filter 

method because it can handle datasets with large dimensions [19], [20]; Feature Importance derived from 

XGBoost is an embedded method [21]. RFE, which is a wrapper method, is used because it is effective for 

high-dimensional data. After all, RFE helps reduce the dimension significantly without losing important 

information but is slower than the filter method because each RFE iteration involves training a model to assess 

the importance of features, so it takes longer, especially in this dataset which has 25088 features [45]. To 

overcome these challenges and optimize resource usage, this study uses a step size of 1,254 features per 

iteration, which is approximately 5% of the total features. This step size was chosen to reduce the number of 

iterations required, thereby improving computational efficiency and reducing runtime. Using a smaller step 

size, such as 100 features or less, would require more iterations, resulting in higher computational cost and 

longer processing time. 

2.5. Information Gain 

Information Gain is employed in this study as a feature selection method for the research model. 

Information Gain is a feature selection method that takes into account features with a high degree of relevance 

in order to reduce the dimensionality of the data  [19], [20]. This method evaluates each feature based on its 

contribution to providing information to separate target classes in a dataset. Information Gain helps sort the 

most informative features so that only the attributes with the highest weights are retained for use in the next 

process [46]. Scenario To investigate the effect of feature quantity on model performance, Information Gain 

will choose the top N features in increments of 500, ranging from 500 to 5000. This method allows us to 

evaluate the usefulness of features in terms of their ability to improve the prediction accuracy of the model. 

The formula for calculating information gain is shown in (1). 

 𝐺𝑎𝑖𝑛(𝑆, 𝐴) = 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆) − ∑
𝑆𝑖

𝑆

𝑛
𝑖=1 × 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆𝑖)  (1) 

Explanation of (1), 𝑆 is the dataset, 𝐴 is the evaluated feature, 𝑆𝑖 is the subset of the dataset that has a 

certain value for feature 𝐴, and n is the number of unique values of feature 𝐴 [47]. 

 

2.6. Extreme Gradient Boosting (XGBoost) 

XGBoost is a gradient-boosting algorithm optimized to improve computational efficiency and 

performance in regression and classification models [15], [16]. It was developed by Tianqi Chen and Carlos 

Guestrin and designed as an efficient and scalable implementation to handle large-scale data [12], [17]. By 

simplifying the objective function and supporting parallel computation during the training process, XGBoost 

is able to reduce the risk of overfitting and improve the speed and accuracy of computation [12].  

For the feature selection scenario, the model used the feature importance score generated by the XGBoost 

model [21]. In this scenario, the model is first trained using all available features to establish a baseline. Once 

training is complete, the feature_importances_ attribute of the model assigns a score to each feature, reflecting 

their relative importance based on their contribution to the model's accuracy. This score is then used to rank 

and select the N features with the highest importance. Started with the top 500 features and increased the 

number in 500 increments, up to a maximum of 5000 features. This process allows us to evaluate the effect of 

the number of features on model performance, ensuring that only the most informative features are used in 

further analysis. 

 

2.7. Recursive Feature Elimination (RFE) 

Recursive Feature Elimination (RFE) is a feature selection method that aims to select the most relevant 

subset of features to reduce data dimensionality. The process starts by considering all the variables available 

in the model. Iteratively, RFE removes one or more features with the smallest contribution to model 

performance at each step. This process continues until the desired number of features is reached or only one 

feature remains, depending on the selection objective [45]. In this study, RFE is used to reduce the 

dimensionality of the data generated from the VGG16 model, which has a total of 25088 features per iteration. 

The model used in the RFE process is the Random Forest Regressor, which is able to assess the importance of 

features based on their influence on the regression target. In this study, 1254 features were eliminated per 
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iteration, leaving only the single most important feature. After that, RFE generates a feature ranking, where 

rank 1 is the most relevant feature. The resulting features are selected top N features, ranging from the top 500 

to the top 5000, to be used in training the XGBoost model. This process allows the exploration of model 

performance with various numbers of features, helping to determine the optimal number of features that provide 

the best accuracy and efficiency. 

 

2.8. Model Evaluation 

Model evaluation for regression methods is performed using several key evaluation metrics, namely Root 

Mean Squared Error (RMSE), Mean Absolute Error (MAE), and Coefficient of Determination (R²). These 

metrics are used to measure how well the regression model predicts the target value compared to the actual 

value. 

RMSE is simply the square root of MSE [48], represented in (2). RMSE helps assess how well the 

regression model predicts the target value. MAE is used to measure the absolute difference between the 

predicted and actual values, as shown in (3). R² is a statistical measure used in the context of linear regression 

to show how well the independent variables explain the variability of the dependent variable [49], [50], detailed 

in (4). 

 𝑅𝑀𝑆𝐸 =  √𝑀𝑆𝐸 =   √
1

𝑁
 ∑ (𝑃𝑖 − 𝑟𝑖)

2𝑁
𝑖=1   (2) 

 𝑁 is the number of observations, 𝑃𝑖  is the value predicted by the model for the i-th observation, 𝑟𝑖  is the 

actual value for the i-th observation. 

 𝑀𝐴𝐸 =    
∑ |𝑦𝑖− 𝑥𝑖|𝑁

𝑖=1

𝑁
  (3) 

where 𝑁 is the number of observations. 𝑦𝑖  is the value predicted by the model for the i-th observation 𝑥𝑖  is the 

actual value of the i-th observation. 

 𝑅2 = 1 −
∑ (𝑦𝑖− 𝑦̂𝑖)2𝑛

𝑖=1

∑ (𝑦𝑖− 𝑦̅)2𝑛
𝑖=1

  (4) 

where 𝑦𝑖  is the actual value for the i-th observation. 𝑦̂𝑖 is the value predicted by the model for the i-th 

observation. 𝑦̅ is the average of the actual values. n is the number of observations. 

 

3. RESULTS AND DISCUSSION  

This section contains the results of the research conducted, specifically explaining the research findings 

that utilize XGBoost and the features extracted using VGG16 with the Imagery dataset consisting of the GEE 

dataset and the Drone dataset, where 8,762 images from GEE and 2,072 images from drone images and the 

total data is 10,834 images. Each data has passed the data preprocessing process consisting of data labeling, 

data padding, data augmentation, and feature extraction using VGG16. After preprocessing, the dataset will be 

used to evaluate the performance of the XGBoost model in four different scenarios. The impact of each 

preprocessing step on the model's performance was significant: data padding helped maintain image integrity, 

data augmentation increased the robustness of the model against overfitting, and careful feature extraction 

using VGG16 ensured that the most relevant features were used for training the model. 

3.1. Baseline Model 

In the first scenario, the preprocessed dataset is used without additional feature selection. The model 

training process is used using XGBoost, where the dataset will be divided into train data and test data with a 

ratio of 80:20. Model performance is evaluated using RMSE, MAE, and R² metrics, which are shown in Table 

2. A 5-fold cross-validation technique was employed to provide a more robust evaluation of the model, a 5-

fold cross-validation technique was also applied, ensuring that the model is reliable across different subsets of 

data. The results of the model evaluation are shown in Table 2 and cross-validation in Table 3. 

 

Table 2. Evaluation Result of the Baseline Model 
Metric Result 

RMSE 7455.164635748977 

MAE 2555.294054016815 

R² 0.7046865389897251 
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Table 3. Cross Validation Baseline Model 
Fold RMSE MAE R² Time 

1 7492.6491 2629.9569 0.7017 86.58s 

2 7608.3610 2723.7737 0.7269 85.66s 

3 6612.5663 2247.9768 0.7662 87.45s 

4 6830.3134 2371.8654 0.7300 92.32s 

5 6893.1691 2388.1574 0.7542 91.51s 

Average ± Standard Deviation 7087.4118 ± 391.1300 2472.3460 ± 176.3988 0.7358 ± 0.0225  

Total Time    443.53s 

 

Based on Table 2 the result of the baseline model is that the RMSE value of 7455.16 indicates the average 

magnitude of the prediction error, where a lower value would reflect better model accuracy. The MAE of 

2555.29 indicates that the model, on average, misses about 2555 units in its predictions. The R² value of 0.7047 

indicates that the model explains about 70.47% of the variability in the target variable, which is considered a 

moderate fit for the regression task. These results provide an initial idea of the model's performance before 

performing advanced steps such as feature selection. This baseline model will be used as a reference to compare 

the performance of more complex models in the next scenario. Table 3 presents the results of the 5-fold cross-

validation analysis performed on the baseline model to analyze model performance. Cross-validation was 

performed to statistically ensure the validity of the model and to test its stability against variations in the 

training and testing data. The results of each fold, consisting of the metrics RMSE, MAE, R², and computation 

time, were recorded to provide a comprehensive picture of the model's performance. In the first fold, the model 

recorded an RMSE of 7492.6491, MAE of 2629.9569, and coefficient of determination (R²) of 0.7017, with a 

processing time of approximately 86.58 seconds. The second fold showed a slight increase in R² to 0.7269 with 

RMSE and MAE of 7608.3610 and 2723.7737, respectively, and a faster processing time of 85.66 seconds. 

The third and fourth folds showed a further increase in R², as well as a decrease in RMSE and MAE values, 

indicating increased effectiveness of the model in analyzing that subset of data. The time taken for these two 

folds was 87.45 and 92.32 seconds. The fifth fold produced an R² of 0.7542 with an RMSE of 6893.1691, an 

MAE of 2388.1574, and a time of 91.51 seconds. The average of the five folds resulted in an RMSE of 

7087.4118 with a standard deviation of 391.1300, MAE of 2472.3460 with a standard deviation of 176.3988, 

and R² of 0.7358 with a standard deviation of 0.0225, indicating the model's consistency in performance across 

the five-fold cross-validation. The total time taken to complete all folds was 443.53 seconds, showing relatively 

good time efficiency in terms of computation. 

 

3.2. Feature Selection with Feature Importance 

In this scenario, the XGBoost Model is trained with features that have been selected based on Feature 

Importance. This process aims to reduce data complexity by retaining the most influential features, which is 

expected to improve model performance and computational efficiency. In this scenario, Top-N features chosen 

at different points in time, ranging from 500 to 5000, were used to retrain the model. The goal of this 

progressive selection was to track how model performance changed as more features were kept. Finding the 

ideal feature count that would strike a balance between computing efficiency and model correctness was the 

goal. Model performance was evaluated using the RMSE, MAE, and R² metrics in Table 4. A 5-fold cross-

validation technique was employed to ensure that the model performance assessment is robust and reliable. A 

5-fold cross-validation technique was applied. The results of this cross-validation, which show the performance 

of the model more comprehensively through various subsets of data, are presented in Table 5.  

 

Table 4. Evaluation Result of the Feature Importance Model 
Top-N Features RMSE MAE R² 

500 7063.5704 2412.7635 0.7349 

1000 7030.6961 2422.5287 0.7374 

1500 7028.3192 2421.4212 0.7375 

2000 7028.3192 2421.4212 0.7375 

2500 7028.3192 2421.4212 0.7375 

3000 7028.3192 2421.4212 0.7375 

3500 7028.3192 2421.4212 0.7375 

4000 7028.3192 2421.4212 0.7375 

4500 7028.3192 2421.4212 0.7375 

5000 7028.3192 2421.4212 0.7375 
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Table 5. Cross Validation Feature Importance 
Top-N Features RMSE (Average ± Std) MAE (Average ± Std) R² (Average ± Std) Time 

500 6401.89 ± 251.21 2207.16 ± 94.06 0.7851 ± 0.0185 3.920249s   

1000 6531.96 ± 226.30 2255.89 ± 93.32 0.7765 ± 0.0161 7.228177s   

1500 6528.67 ± 203.96 2251.26 ± 96.04 0.7768 ± 0.0141 9.640155s   

2000 6518.11 ± 219.36 2244.07 ± 87.93 0.7775 ± 0.0152 11.044267s   

2500 6512.85 ± 194.19 2241.53 ± 93.81 0.7778 ± 0.0150 13.613242s   

3000 6542.26 ± 169.04 2271.95 ± 78.07 0.7757 ± 0.0155 13.959764s   

3500 6458.87 ± 176.46 2237.76 ± 92.92 0.7816 ± 0.0127 16.544172s   

4000 6564.74 ± 175.60 2273.17 ± 100.07 0.7744 ± 0.0117 17.011002s   

4500 6514.42 ± 170.63 2259.86 ± 105.87 0.7779 ± 0.0108 19.983680s   

5000 6552.04 ± 108.03 2269.21 ± 72.22 0.7753 ± 0.0092 20.058310s   

Overall Average 6512.5810 ± 189.4780 2251.1860 ± 91.4310 0.7779 ± 0.0139  

Total Time    133.003018s 

 

Based on Table 4, selecting Top-N Features for training the XGBoost model shows improved 

performance up to 1500 features, with an RMSE of 7028.32, MAE of 2421.42, and R² of 0.7375. These values 

indicate that the model can explain about 73.75% of the variability of the carbon stock data, which reflects 

good performance. However, after 1500 features were selected, even if the number of features was increased 

to 5000, the RMSE, MAE, and R² metrics remained stable, indicating that adding further features did not 

improve model performance. The model was already effective enough with 1500 features, so additional 

features did not contribute significantly to accuracy or reduction in prediction error. Adding irrelevant features 

only adds complexity to the model without improving its performance, as well as extending computation time 

and complicating interpretation. Thus, 1500 features are the optimal number for this model, and further feature 

selection does not provide significant benefits. Table 5 presents the results of the 5-fold cross-validation 

analysis performed on the model with feature importance to assess the impact of feature selection on model 

performance. The results, including metrics RMSE, MAE, R², and computation time, were meticulously 

recorded to provide a detailed view of the model's effectiveness across different feature subsets. The overall 

analysis from 500 to 5000 features indicates that while adding more features did not significantly enhance the 

RMSE or R² values beyond the initial 500 features, the model maintained a robust performance across all 

metrics. The average and standard deviation of RMSE across all feature sets were 6586.09 ± 109.05, MAE was 

2258.19 ± 95.06, and R² was 0.7771 ± 0.015, demonstrating the model's consistency in handling feature 

variability. The total computation time showed a linear increase with the number of features, emphasizing the 

trade-off between computational efficiency and model complexity. 

 

3.3. Feature Selection with Information Gain 

In this scenario, the feature selection process is performed using the Information Gain method. This 

method aims to evaluate each feature based on its contribution to providing information to the target. The 

features with the highest scores are selected for use in training the XGBoost model. The feature selection data 

is divided into training data and testing data with a ratio of 80:20. The XGBoost model was trained using the 

training data and evaluated on the testing data. The evaluation is done using the RMSE, MAE, and R² metrics 

in Table 6. A 5-fold cross-validation technique was applied, and the results of this validation are presented in 

Table 7. 

Based on Table 6, the selection of Top-N Features using Information Gain shows improved performance 

up to 1500 features, with RMSE of 7287.76, MAE of 2452.80, and R² of 0.7178. These values indicate that the 

model can explain about 71.78% of the variability of the carbon stock data, which reflects a good level of 

accuracy. However, after 1500 features were selected, increasing the number of features to 5000 did not result 

in significant improvements in the RMSE, MAE, or R² metrics. Indicates that after a certain point, adding more 

features does not provide valuable additional information to the model, as the initial features have already 

captured the relevant patterns. Adding irrelevant or redundant features will only increase the complexity of the 

model without providing any meaningful improvement, which in turn will extend the computation time and 

complicate the interpretation of the model. Therefore, 1500 features were identified as the optimal number for 

this model, and further feature selection did not provide any significant benefit to the model performance. Table 

7 presents the results from a 5-fold cross-validation analysis conducted on the model utilizing Information Gain 

for feature selection. The analysis showcases that increasing the number of features generally maintains the 

model's robustness without significantly enhancing performance metrics beyond the initial set of features. 

Specifically, the RMSE and R² values do not show substantial improvement as more features are added, which 

suggests a point of diminishing returns in feature inclusion. The overall averages for RMSE and MAE are 
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7074.58 and 2448.67, respectively, with a slight variability indicated by their standard deviations-similarly, R² 

averages at 0.7368, reflecting consistent predictive accuracy across different feature sets. The table also notes 

the total computation time of 240.66 seconds, highlighting the computational demands of handling larger 

feature sets. 

 

Table 6. Evaluation Result of the Information Gain Model 
Top-N Features RMSE MAE R² 

500 7542.5688 2578.0617 0.6977 

1000 7490.0680 2539.2658 0.7019 

1500 7287.7600 2452.8006 0.7178 

2000 7511.4340 2615.1572 0.7002 

2500 7464.5636 2558.1963 0.7039 

3000 7504.3945 2604.6947 0.7008 

3500 7480.3058 2593.4742 0.7027 

4000 7393.7409 2569.8018 0.7095 

4500 7328.0883 2570.3598 0.7147 

5000 7350.2846 2536.5060 0.7129 

 

Table 7. Cross Validation Information Gain 
Top-N Features RMSE (Average ± Std) MAE (Average ± Std) R² (Average ± Std) Time 

500 7037.3912 ± 497.6351 2429.0394 ± 191.5723 0.7398 ± 0.0246 5.40s 

1000 7012.5462 ± 354.6951 2419.0379 ± 150.9752 0.7411 ± 0.0234 9.53s 

1500 7113.0591 ± 266.4548 2447.8339 ± 133.4602 0.7342 ± 0.0116 15.20s 

2000 7068.7249 ± 276.2367 2439.4110 ± 110.5843 0.7373 ± 0.0148 18.84s 

2500 7045.9459 ± 507.2022 2440.1798 ± 180.6700 0.7386 ± 0.0309 23.45s 

3000 7098.3828 ± 431.9045 2447.1553 ± 168.9598 0.7347 ± 0.0273 26.74s 

3500 7104.8367 ± 377.8103 2474.7229 ± 154.3310 0.7346 ± 0.0208 32.25s 

4000 7118.4804 ± 296.0395 2489.2646 ± 124.8133 0.7335 ± 0.0169 32.73s 

4500 7107.2879 ± 337.1540 2452.1383 ± 164.0920 0.7345 ± 0.0171 38.07s 

5000 7039.1440 ± 425.2726 2447.8960 ± 182.0567 0.7398 ± 0.0184 38.45s 

Overall Average 7074.5799 ± 377.0405 2448.6679 ± 156.1515 0.7368 ± 0.0206   

Total Time    240.66s 

 

3.4. Feature Selection with Recursive Feature Elimination 

In this last scenario, this scenario uses the Recursive Feature Elimination (RFE) method. RFE 

systematically eliminates features, starting with an initial set of 25,088 features and removing 1,254 features 

per iteration. This iterative process continues until only the most influential features are retained. The goal is 

to determine the most effective subset of features that contribute significantly to the model's accuracy. This 

step is crucial for optimizing the model's performance, reducing complexity, and improving computational 

efficiency. RFE utilizes a Random Forest Regressor to evaluate the importance of each feature, ensuring that 

only the most relevant features are selected for the final model training with XGBoost. This methodical 

reduction helps pinpoint the optimal number of features, enhancing the model's predictive power and 

efficiency. The outcomes of this scenario are evaluated using RMSE, MAE, and R² metrics, with detailed 

results presented in Table 8. 

 

Table 8. Evaluation Result of the RFE 
Top-N Features RMSE MAE R² 

500 6723.4443 2283.7496 0.7598 

1000 6841.4536 2333.2321 0.7513 

1500 7008.4801 2401.8873 0.7390 

2000 7012.7800 2387.5935 0.7387 

2500 7047.5720 2415.8216 0.7361 

3000 6934.5124 2390.1401 0.7445 

3500 7057.4485 2432.4566 0.7354 

4000 7076.0014 2434.1331 0.7340 

4500 7053.6122 2422.0173 0.7356 

5000 7056.8830 2447.1458 0.7354 

 

Based on Table 8, this model shows a consistent trend across different subsets of features, ranging from 

500 to 5000 features. The RMSE and MAE metrics display a relatively narrow range of values, indicating 
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stable error rates regardless of the number of features used. The RMSE begins at 6723.4443 for 500 features 

and shows minor fluctuations throughout the feature set, reaching a peak at 7076.0014 for 4000 features before 

slightly tapering off to 7056.8830 for 5000 features. Similarly, the MAE starts at 2283.7496, gradually 

increasing as more features are incorporated, with a peak value of 2447.1458 for 5000 features. The R² value 

changes slightly as the number of features increases. Starting from 0.7598 with 500 features, the R² shows a 

general decrease and then stabilizes around 0.7354 when the number of features reaches 5000. This trend 

suggests that adding additional features does not significantly improve the model's ability to explain variations 

in the data. In other words, despite the increase in the number of features used, there is no proportional 

improvement in the accuracy of the model. Table 9 presents the results from a 5-fold cross-validation analysis 

using Recursive Feature Elimination (RFE) for feature selection in the model. The analysis indicates that as 

the number of features increases from 500 to 5000, the RMSE and R² values experience slight fluctuations but 

do not show substantial improvements, suggesting a plateau in performance gains with additional features. The 

overall averages for RMSE and MAE are 6651.62 and 2297.57, respectively, displaying a consistent model 

performance with minor variability as indicated by their standard deviations. The R² value averages at 0.7673, 

maintaining a relatively stable predictive accuracy across different subsets of features. Additionally, the total 

computation time for these analyses is noted at 1596.82 seconds, indicating the computational effort required 

as more features are considered in the model. 

 

Table 9. Cross Validation RFE 
Top-N Features RMSE (Average ± Std) MAE (Average ± Std) R² (Average ± Std) Time 

500 6594.1985 ± 226.8203 2301.8579 ± 117.8836 0.7714 ± 0.0118 37.24s 

1000 6602.9910 ± 367.0854 2273.5961 ± 150.5800 0.7705 ± 0.0209 66.02s 

1500 6630.0703 ± 385.7827 2287.4550 ± 156.0974 0.7686 ± 0.0225 95.82s 

2000 6676.8039 ± 384.1197 2302.1001 ± 139.4578 0.7656 ± 0.0196 125.09s 

2500 6632.4630 ± 349.2750 2289.3591 ± 148.3073 0.7687 ± 0.0174 154.05s 

3000 6677.4986 ± 340.0591 2307.4626 ± 155.6805 0.7657 ± 0.0162 180.49s 

3500 6649.3519 ± 296.4507 2292.5783 ± 133.8495 0.7675 ± 0.0162 204.80s 

4000 6669.8537 ± 314.9440 2304.0193 ± 140.5359 0.7660 ± 0.0185 226.27s 

4500 6702.6080 ± 347.4423 2314.4365 ± 155.1583 0.7639 ± 0.0171 248.43s 

5000 6680.3773 ± 347.6081 2302.8263 ± 148.1947 0.7655 ± 0.0168 258.61s 

Overall Average 6651.62 ± 335.96 2297.57 ± 144.57 0.7673 ± 0.0177   

Total Time    1596.82s 

 

3.5. Discussion 

This study evaluated the XGBoost model using four feature selection methods: baseline, Feature 

Importance, Information Gain, and Recursive Feature Elimination (RFE), with cross-validation ensuring 

stability across data splits. RFE was the standout method, systematically reducing features from 25,088 to 

between 500 and 5000 and demonstrating superior stability and reliability with the best R² values and minimal 

variations in RMSE and MAE. 

The average performance metrics for RFE were an RMSE of 6651.62, an MAE of 2297.57, and an R² of 

0.7673, which underscore its efficiency in optimizing both the model's complexity and computational demands. 

Detailed evaluation metrics from Table 8 show that the RFE model began with an RMSE of 6723.4443 for 500 

features and experienced slight variations, peaking at 7076.0014 for 4000 features before slightly decreasing 

to 7056.8830 for 5000 features. The MAE started at 2283.7496 and modestly increased to 2447.1458 for 5000 

features. The R² began at 0.7598 for 500 features and demonstrated minimal variation, stabilizing around 

0.7354 for 5000 features. The results confirm RFE's effectiveness in identifying and retaining the most 

impactful features, thus optimizing the model's performance without unnecessary complexity. Despite its 

advantages, RFE requires significant computational resources and time, especially as the feature set size 

increases. In this study, we implemented a step reduction of 5% of the total features to mitigate extensive 

computational demands. This approach was chosen to reduce the number of iterations and, consequently, the 

resources and time required. Using smaller step sizes, such as 100 features or fewer, would increase the number 

of iterations significantly, thus escalating the computational burden. This limitation is crucial for applications 

where resource constraints are a significant consideration, and it suggests a potential trade-off between model 

refinement and practical feasibility. The baseline model showed less accuracy, and though Feature Importance 

and Information Gain improved over the baseline, they did not reach the performance levels of RFE. This study 

affirms the importance of consistent model performance across varied data subsets, suggesting RFE's suitability 

for practical applications where stability and efficiency are crucial. Future research might explore combining 

RFE with other techniques to enhance performance in complex data scenarios. 
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In comparing the performance of the Recursive Feature Elimination (RFE) enhanced XGBoost model to 

other studies. Firstly, the RFE method achieved an R² of 0.7673, which, while effective for the datasets used 

in this study (GEE and drone imagery), falls short of the 0.89 R² achieved by a study utilizing the Boruta 

method with Landsat 8 OLI data. This discrepancy suggests that Boruta may be better at capturing relevant 

features specific to the Landsat dataset, providing a more accurate model for that particular type of imagery 

[10]. Conversely, when compared to another study that employed XGBoost with Gradient Boosting for feature 

selection on Sentinel-1 and Sentinel-2 datasets, which reported an R² of 0.59, the RFE method shows superior 

performance, indicating its potential better suitability for the imagery types analyzed in this research [11]. 

Additionally, the RFE method outperforms the Genetic Algorithm used with XGBoost in another study, which 

achieved an R² of 0.57 in predicting soil organic carbon content using various datasets [12]. This highlights 

RFE's efficiency in feature reduction and its capability to enhance predictive accuracy more effectively than 

some other feature selection methods in similar contexts. 

To enhance the model's quality and broaden this study's scope, future research should consider several 

avenues. Firstly, experimenting with different feature extraction methods could provide valuable insights into 

how alternative approaches compare to those employed in this study. Additionally, integrating the Recursive 

Feature Elimination (RFE) method with other models to become hybrid or embedded models could potentially 

amplify the predictive accuracy and robustness of the results. Another promising direction could involve 

applying other high-dimensional data suitable models like Boruta or genetic algorithms as alternative wrapper 

methods to assess their effectiveness against the current methodologies. Such investigations would not only 

address the limitations observed but also optimize the performance of the XGBoost model applied to diverse 

imagery datasets like GEE and Drones, potentially leading to more refined and accurate environmental 

analyses. 

 

4. CONCLUSION 

This study evaluates the impact of feature selection on the performance of the XGBoost model integrated 

with VGG16 feature extraction for processing image datasets from GEE and drone sources, where the model 

is organized in four different scenarios: without feature selection, using Feature Importance, using Information 

Gain and using Recursive Feature Elimination. The experimental results have clearly shown that the application 

of feature selection significantly improves the accuracy and efficiency of the model. The Recursive Feature 

Elimination (RFE) method emerged as the most effective strategy in this study, outperforming Feature 

Importance and Information Gain. RFE demonstrated its capability to identify and retain impactful features, 

optimizing model complexity without compromising accuracy. However, as a wrapper method, RFE requires 

more computational resources and processing time, making Information Gain and Feature Importance practical 

alternatives for applications with limited resources, albeit with a trade-off in accuracy. These findings 

emphasize the importance of feature selection in improving machine learning model performance, especially 

for high-dimensional and complex environmental datasets. Feature selection facilitates the removal of 

irrelevant features, reducing dataset dimensionality and improving computational efficiency while enhancing 

prediction accuracy and preventing overfitting. The study highlights the contributions of all three feature 

selection methods in optimizing the efficiency and accuracy of the XGBoost model, underscoring their 

relevance for environmental data analysis. Future research can build on this study by exploring alternative 

feature extraction methods and integrating Recursive Feature Elimination (RFE) with different feature 

selection techniques to enhance predictive performance and robustness. Additionally, evaluating sophisticated 

feature selection methods like Boruta or genetic algorithms could enhance the understanding and handling of 

high-dimensional datasets. These efforts aim to refine machine learning applications to environmental data, 

particularly for complex datasets like those from GEE and drones, potentially leading to more accurate 

environmental analyses. 
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