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1. INTRODUCTION 

Drug-target interaction (DTI) refers to the binding process between a drug and its specific target, leading 

to changes in the target's function or behavior [1]. A drug is defined as any chemical compound that, upon 

consumption, changes the organism's chemical composition. The "target" denotes any biological element 

within the organism that the drug interacts with, causing changes in chemical states. DTI plays a critical role 

in the drug development process, which can require investments of up to 2 billion US Dollars and span more 

than 15 years from initial concept to public distribution. Due to the unpredictable nature of their interactions, 

most known chemical compounds have not yet been explored for therapeutic use. As a result, there has been a 

growing interest in explaining the mechanisms of drug-target interactions and developing methods to predict 

these interactions effectively [2]. Typically, the DTI predictions can be carried out through direct laboratory 

experiments [2]. However, these laboratory experiments are time-consuming and expensive. To overcome 

these challenges, new in silico methods are needed [1]. One of the solutions is using computational approaches, 

that, for the case of DTI, can be categorized into three main types, i.e., ligand-based, docking simulation-based, 
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 Drug-target affinity (DTA) prediction is critical to drug discovery, yet 

traditional experimental methods are expensive and time-consuming. 

Existing computational approaches often struggle with limitations in 

representing the structural and sequential complexities of drugs and proteins, 

resulting in suboptimal prediction accuracy. This study proposes a novel 

framework integrating Graph Attention Networks (GAT) for drug molecular 

and motif graphs and Bidirectional Long Short-Term Memory (BiLSTM) for 

protein sequences. A two-sided multi-head attention mechanism is utilized to 

dynamically model drug-protein interactions, enhancing robustness and 

accuracy. This research contribution is the development of a robust 

computational model that improves the accuracy of DTA predictions, 

reducing dependency on traditional laboratory methods. The integration of 

structural and sequential features provides a more comprehensive 

representation of drug-protein interactions. The study utilizes the Davis and 

KIBA, a binding affinity datasets that is widely used. the proposed model 
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0.5046 and 0.6672, respectively, outperforming baseline models. In 

conclusion, this study showed the proposed approach as a reliable method for 

DTA prediction, offering a faster and more accurate alternative in the drug 

discovery research field. However, there are still limitations, such as high 

computational complexity and the GAT model still uses static attention. 

Future work will focus on addressing this issue, testing the model across 

broader datasets, and implementing additional drug and target representation 

for richer feature extraction. 
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and chemogenomic-based approaches [3]. Ligand-based methods work by assuming that similar molecules 

share similar properties, allowing drug molecules to bind to proteins with analogous structures [4], [5]. 

However, this method has several drawbacks, such as the prediction that can be conducted only if both of the 

structure is known [6]. Meanwhile, docking simulation methods rely on the three-dimensional structures of 

proteins. However, this method also face several challenges such as the unavailability of three-dimensional 

structures of proteins compared to an actual number of target proteins in the human body [6], [7], [8], [9]. The 

chemogenomic approach integrates chemical information of drugs and genomic information of proteins within 

the same subspace to predict potential interactions using machine learning methods [1]. The chemogenomic 

approach has an advantage related to the procedure of this method that is not necessary to have the 3D structure 

of protein and drug and also has a large biological data that publicly available [1]. 

A chemogenomic approach using the machine learning method can be further classified into several 

methods, such as similarity-based methods [10], [11], [12], feature-based methods [13], [14], [15], and deep 

learning methods [16], [17]. Recently, deep learning has gained prominence in DTI prediction due to its ability 

to uncover hidden or complex patterns in data. Generally, DTI predictions using deep learning methods are 

defined as a classification task [18], [19], [20], [21] that determines the existence of interaction between drug 

and target. However, this approach neglects the precision value of binding affinity, which quantifies the 

strength of the interaction between a drug and its target as a continuous numerical value [22]. Therefore, 

predicting drug-target affinity (DTA) provides the additional benefit of estimating the interaction strength 

between a drug and its target, compared to DTI prediction. This capability helps narrow down the vast pool of 

potential compounds in drug discovery research, making the search process more efficient [22]. 

Several previous studies have been performed related to DTA prediction using deep learning models. In 

2018, Öztürk et al. introduced DeepDTA, which uses 1D Convolutional Neural Networks (1DCNN) for feature 

learning on both drugs and targets sequences [22]. This approach was further refined in WideDTA by 

incorporating additional drug and target representations [23]. Pu et al. later proposed DeepFusionDTA, which 

combines sequence and structural information using Dilated-CNN and BiLSTM blocks to create fusion feature 

maps, followed by LightGBM model for prediction [24]. Another studies, such as FusionDTA, CSatDTA, and 

DeepMHDTA combines an attention mechanism in the feature extraction phase to better capture information 

from drugs and protein sequences [25], [26], [27]. 

Although deep learning models have demonstrated promising results in predicting drug-target affinity 

(DTA), many studies often only use simple concatenation between drug and protein in the prediction phase. 

This can lead to some lost interaction information between drugs and proteins. To address this issue, various 

studies have integrated attention mechanisms for better representation and interaction modeling between drugs 

and proteins. For instance, Zhao et al. introduced AttentionDTA, utilizing an attention mechanism to 

dynamically capture critical subsequences of drugs and proteins [28]. Abbasi et al. proposed DeepCDA, which 

introduced attention mechanism to highlight the mutual interactions between compound substructures and 

protein subsequences before concatenating their representations [29]. Mahdaddi et al. contributed to CNN-

AbiLSTM, combining CNN and attention-based BiLSTM to prioritize important regions within drug-protein 

pairs during concatenation [30]. Zhao et al. enhanced their model in 2023 with a two-side multi-head attention 

mechanism, which calculates attention scores between subsequences of drugs and proteins [31]. These 

enhancements have improved the performance of DTA prediction models by addressing the limitations of 

simple embedding concatenation. 

Even though attention mechanisms for model interaction between drugs and targets has significantly 

enhanced the performance of DTA prediction models by addressing the limitations of simple embedding 

concatenation. However, there is still a limitation when representing drugs as string sequences. This challenge 

arises because string representations can lose essential structural details of the drugs, affecting the accuracy of 

binding affinity predictions [32]. To overcome this issue, several studies have employed graphs as a drug 

representation. Nguyen et al. introduced GraphDTA, leveraging Graph Neural Networks (GNNs) for drug 

molecular graph representation and CNNs for protein sequence learning, enabling riche feature extraction for 

drugs [32]. Zhang et al. extended this concept by developing SAG-DTA, which utilizes a self-attention 

mechanism within the GNN to emphasize important atomic features in drug graphs [33]. Several models use 

GNN for drug graphs and also incorporate LSTM for protein sequences, addressing long-term dependencies in 

sequential data [34], [35]. Chen et al. presented SGNet, integrating drug graphs with protein sequences encoded 

via Conjoint Triad and convolutional layers to improve the fusion of structural and sequential features [36]. 

Qiu et al. developed LSTM-SAGDTA, employing self-attentive graph pooling and LSTM for DTA predictions 

[37]. Tran et al. introduced DeepNC, a framework using GNNs and hypergraph attention mechanisms for drug-

target binding affinity prediction, focusing on comprehensive graph-based representations [38]. Wang et al. 

further advanced this field with MSGNN-DTA, integrating multi-scale topological features from motif graphs 
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and weighted protein graphs while employing a gated skip-connection mechanism for robust feature fusion 

[39]. Overall, representing the drug as a graph improved the DTA prediction performance by focusing on more 

structural information. 

Despite these advancements, recent graph-based models for DTA prediction face several limitations. 

Firstly, while graph-based approaches excel at representing drugs, capturing the full complexity of a drug is 

challenging with a single graph structure. Standard molecular graphs may neglect important substructures, such 

as drug motifs within the molecule that significantly influence the drug’s properties and interactions. These 

drug motifs, play crucial roles in biological activity and binding affinity. Alternative approaches involve 

incorporating motif graphs or higher-order structural representations, which can capture these meaningful 

biological substructures within the molecular graph. By integrating the overall molecular graph and specific 

motifs, the model can achieve a more comprehensive representation of the drug, leading to improved prediction 

accuracy. Secondly, GNN models like Graph Convolutional Networks (GCNs) aggregated information from 

neighboring nodes equally, which may not effectively capture the varying importance of different nodes and 

edges in the graph. Graph Attention Networks (GATs) address this limitation by incorporating an attention 

mechanism that allows the model to learn and assign different importance weights to neighboring nodes. By 

focusing on the most relevant parts of the graph, GATs can capture more nuanced and expressive 

representations, leading to improved performance in DTA prediction. 

Thirdly, protein embeddings predominantly rely on sequence information but often fail to capture the 

contextual relationships between preceding and succeeding amino acids within the sequences. Traditional 

sequence models may not effectively model long-range dependencies or the full context of the sequence, which 

can be crucial for understanding protein function and interactions. This limitation affects the model’s ability to 

accurately predict binding affinities, as important contextual information is missed. Alternative approaches 

involve using models that better capture sequence context, such as bi-directional LSTM (BiLSTM) networks. 

These models consider both past and future context in the sequence, enabling a more comprehensive 

understanding of the protein’s structural and functional properties. Lastly, current interaction modeling 

techniques can only capture interactions between two representations—drug graphs and protein sequences—

without considering additional representations. This limitation restricts the model’s ability to fully capture the 

complex interplay between different features of drugs and targets, potentially overlooking critical interactions 

that could influence binding affinity. To overcome this, alternative approaches involve integrating additional 

representations, such as motif graphs for drugs or structural domains for proteins, and employing interaction 

models capable of handling multiple inputs. For example, using a Two-Side Multi-Head Attention Mechanism 

allows the model to consider multiple aspects of the drug and target simultaneously, capturing intricate patterns 

of interaction and leading to more accurate predictions. 

To address these challenges, this study introduces a computational approach that integrates GAT for drugs 

molecular graph embedding with motif graph embedding as additional drug representation and BiLSTM for 

target protein sequences. This integration aims to enhance the DTA prediction accuracy by capturing both the 

overall molecular structure and substructures (motifs) of drugs, as well as improving the contextual 

understanding of protein sequences. To improve the prediction phase, this study also incorporates a Two-Side 

Multi-Head Attention Mechanism inspired by AttentionDTA. This mechanism dynamically models the 

interdependencies between drug molecular graphs embedding, drug motif graphs embedding, and protein 

embeddings to predict the binding affinities value. This research contribution is to enhance the model’s ability 

to predict drug-target binding affinity values by providing a more comprehensive drug representation and 

improved interaction modeling between drugs and proteins. 

 

2. METHODS  

This study focuses on developing a robust deep-learning model for DTA prediction by leveraging 

advanced computational techniques. The research workflow involves several key steps, including dataset 

selection, pre-processing of data to create suitable representations for drugs and proteins, model development, 

and evaluation of predictive performance using established metrics. Two widely recognized datasets, Davis 

and KIBA, were employed for model training and validation due to their rich and diverse information on drug-

protein interactions. Pre-processing steps were designed to extract meaningful features from drugs and targets, 

including molecular graphs, motif graphs, and protein sequences. The proposed model integrates sequence- 

and graph-based approaches with advanced attention mechanisms to enhance predictive accuracy. Finally, 

rigorous evaluation metrics were applied to assess the model's effectiveness in predicting binding affinities, 

ensuring robust and reliable performance. This study workflow can be seen in Fig. 1. 
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Fig. 1. Proposed Method study workflow 

 

2.1. Dataset 

In this study, the Davis and KIBA datasets were utilized [40], [41]. Both datasets consist of binding 

affinity values, treated as the dependent variable, while drugs and targets/proteins were considered independent 

variables. The datasets were checked for duplicates and missing values to ensure the validity of the data set. 

The Davis dataset consists of selectivity tests for relevant protein kinase and inhibitor families, along with their 

corresponding dissociation constant (𝐾𝑑) values, measured in nanomolar units. To get a better representation 

of the relationship between 𝐾𝑑 and binding affinity, we calculated 𝑝𝐾𝑑  the variable as formulated in (1). Higher 

𝑝𝐾𝑑  values signify stronger binding affinities and vice versa. The distribution of value shows that the 𝑝𝐾𝑑  

value ranges from 5.0 to 10.8. 

 𝑝𝐾𝑑 = −𝑙𝑜𝑔10 (
𝐾𝑑

109
) (1) 

The variable provided in the KIBA dataset is derived by using the KIBA score, which integrates kinase 

inhibitor bioactivity data from various sources, including 𝐾𝑖, 𝐾𝑑, and 𝐼𝐶50, to compute a unified metric known 

as the KIBA score. These scores range from 0.0 to 17.2, where lower values indicate stronger binding affinities. 

A summary of the drugs, targets, and their interaction counts can be seen in Table 1. 

 

Table 1. Dataset Description 
Description Drug Protein Total Interaction Train set (80%) Test set (20%)  

Davis 62 379 30,056 25,046 5,010  

KIBA 2,068 229 118,254 94,603 23,651  

 

2.2. Pre-processing 

SMILES (Simplified Molecular Input Line Entry System) is widely used to represent the three-

dimensional structure of drug molecules in textual format. SMILES strings capture key characteristics of drug 

molecules, such as atomic weights and valence electrons [32]. In this study, each drug's SMILES representation 

was converted into a molecular graph where the nodes represent the collection of atoms in the drug, and the 

edges represent the chemical bonds between atoms [2]. To better describe the node feature in graphs, we 

adapted a set of atomic features from DeepChem [42]. Here, Each node in the molecular graph encodes the 

chemical properties of its corresponding atom using a 78-dimensional feature vector, where each dimension 

corresponds to a specific chemical attribute. Detailed descriptions of these atomic features are provided in 

Table 2. 

To further enhance the representation of drug structure information, a motif-level graph was constructed 

alongside the molecular graph. Motifs in drugs, such as the benzene ring, are closely tied to molecular 

properties. For instance, a benzene ring retains its significance as a whole structure but loses meaning when its 

bonds are considered in isolation. Several layers of graph neural networks (GNNs) struggle to capture the 

complete information within these cyclic structures, leading to an incomplete feature extraction [39]. An 

example of transformation from SMILES into a graph can be seen in Fig. 2. 

 

Table 2. Molecular Graph Node Feature Details 
Feature Dimension 

Atomic symbol 44 

Degree of atom 11 

Total number of connected hydrogen atoms (implicit and explicit) 11 

Implicit valence of atoms 11 

Whether the atom is aromatic or not 1 
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The motif-level graph was formed by identifying fundamental building blocks consisting of both cyclic 

arrangements of atoms and bonds, and individual bonds that are not embedded in any ring structure together 

with their connected atom pairs [39]. Each of these building blocks is represented as a node in the motif graph. 

Nodes corresponding to cyclic structures capture groups of atoms and bonds arranged in rings, while the 

remaining nodes denote single chemical bonds and their associated pairs of atoms. Edges in the motif graph 

represent chemical bonds connecting these nodes. Similar to molecular graphs, the features of motif graph 

nodes were encoded into a 92-dimensional vector based on the DeepChem [42]. The details is described in 

Table 3. 

 

 
Fig. 2. Illustration of drug graph construction 

 

For target processing, the amino acid sequence of the protein's primary structure was utilized. Protein 

sequences consist of 25 types of amino acids, each represented by a specific ASCII character denoting its 

properties. Following the approach used in the GraphDTA study, these sequences were label-encoded with a 

maximum length of 1,000 characters. Sequences shorter than this length were zero-padded, while longer 

sequences were truncated [32]. This is done to ensure the same input dimension size for training convenience. 

Additionally, this length also accommodates the majority of proteins as the length varies from 200 to 2000 

with a median length of 700 characters. 

 

Table 3. Motif Graph Node Feature Details 
Feature Dimension 

Atomic symbols contained in the motif 44 

Number of atoms in the motif 11 

Number of edges connecting to other motifs 11 

Total number of hydrogen atoms connected by motif (implicit & explicit) 12 

Implicit valence of motif 12 

Whether the motif is a simple ring 1 

Whether the motif is chemically bonded or not 1 

 

2.3. Model Training 

This study proposes DTA prediction by integrating graph-based and sequence-based models. The model 

processes drugs as molecular and motif graphs using Graph Attention Networks (GAT) [43] and proteins as 

sequences with Bidirectional Long Short-Term Memory (BiLSTM) [44] and combines these embeddings 

through a two-side multi-head attention mechanism for prediction [31]. The final embeddings will be passed 

through a fully connected layer for the model to predict the affinity value. Fig. 3 provides an overview of the 

proposed architecture. 

The drug graphs are represented as 𝐺 = (𝑉, 𝐸), where 𝑉 (nodes) denotes atoms encoded as 78-

dimensional feature vectors for molecular graph and 92-dimensional feature vectors for motif graph, and 𝐸 

(edges) represent chemical bonds between the atoms. Both graphs pass through five GAT layers to learn node 

embeddings, respectively. Each GAT layer computes the updated representation for a node 𝑖 as in equation (3). 

 𝑎𝑖𝑗 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 (𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈(𝑎𝑇[𝑊ℎ𝑖 ∥ 𝑊ℎ𝑗])) (2) 
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 ℎ𝑖
′ = 𝜎 ( ∑ 𝑎𝑖𝑗𝑊ℎ𝑗

𝑗∈𝑁(𝑖)

) (3) 

Here ℎ𝑗 represent the feature vector corresponding to the neighboring node 𝑗,  𝑊 represent a learnable 

weight matrix, 𝑎𝑖𝑗  is the attention coefficient, and 𝜎 is a non-linear activation (ReLU in this implementation). 

The attention coefficient 𝑎𝑖𝑗  is calculated as in equation (2) where 𝑎𝑇  which is a learnable weight vector and ∥ 

denotes concatenation [43]. After each GAT layer, a gated skip connection is applied to combine features from 

adjacent layers while mitigating gradient vanishing and feature degradation [39]. For a node 𝑖 in the layer 𝑙, 
the skip connection updates the representation in equation (4) and (5). 

 𝑧𝑖 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑈1𝐻𝑖
(𝑙+1)

+  𝑈2𝐻𝑖
(𝑙)

 + 𝑏) (4) 

 𝐻𝑖
(𝑙+1)

= 𝑧𝑖𝐻𝑖
(𝑙+1)

+ (1 − 𝑧𝑖)𝐻𝑖
𝑙  (5) 

Here 𝑈1and 𝑈2 are trainable parameters, 𝑏 is bias, 𝐻𝑖
(𝑙)

 and 𝐻𝑖
(𝑙+1)

 represent the feature vectors of node 𝑖 

at the 𝑙th and 𝑙+1th layer, respectively. The coefficient 𝑧𝑖 represent the learned proportion coefficient that 

retains the information of the preceding hidden layer. A sigmoid activation function is employed to ensure that 

this learned proportion coefficient remains within the interval [0,1]. This process is repeated across the three 

GAT layers and passed into mean global pooling and max global pooling aggregate information across all 

nodes. The pooled features are then passed through two fully connected layers to obtain final drug embedding 

molecular graphs (𝐸𝑚𝑜𝑙) and motif graphs (𝐸𝑚𝑜𝑡𝑖𝑓). 

 

 
Fig. 3. Proposed Model Architecture Overview 

 

Protein targets are represented by their amino acid sequences. Each amino acid is encoded as a 128-

dimensional vector using an embedding layer. The sequence is processed by a BiLSTM, which captures 

contextual relationships in both forward and backward directions. The final BiLSTM output is pooled and 

passed through two fully connected layers to generate the protein embedding (𝐸𝑝𝑟𝑜𝑡). 

The embeddings 𝐸𝑚𝑜𝑙, 𝐸𝑚𝑜𝑡𝑖𝑓 , and 𝐸𝑝𝑟𝑜𝑡are combined using a two-side multi-head attention mechanism 

to capture the interactions between drugs and proteins across modalities [31]. For each attention head 𝑘, 

attention scores are computed as in equation (6) where 𝑊𝑘
𝑚𝑜𝑙 , 𝑊𝑘

𝑚𝑜𝑡𝑖𝑓
, 𝑊𝑘

𝑝𝑟𝑜𝑡
 are trainable weight matrices. 

The weighted embedding is computed as in equation (7). The final combined embedding is the concatenation 

of outputs from all attention heads, which can be seen in equation (8). The combined embedding 𝐻 is passed 

through two fully connected layers to predict the DTA value. 

 𝑎𝑘 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊𝑘
𝑚𝑜𝑙𝐸𝑚𝑜𝑙 + 𝑊𝑘

𝑚𝑜𝑡𝑖𝑓
𝐸𝑚𝑜𝑡𝑖𝑓 + 𝑊𝑘

𝑝𝑟𝑜𝑡
𝐸𝑝𝑟𝑜𝑡) (6) 
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 𝐻𝑘 = 𝑎𝑘⨀[𝐸𝑚𝑜𝑙 ∥ 𝐸𝑚𝑜𝑡𝑖𝑓 ∥ 𝐸𝑝𝑟𝑜𝑡] (7) 

 𝐻 = 𝐶𝑜𝑛𝑐𝑎𝑡(𝐻1, 𝐻2, … , 𝐻𝑘) (8) 

The combined embedding 𝐻 is passed through two fully connected layers to predict the DTA value. The 

final prediction is computed in equation (9). 

 𝑦 = 𝜎 (𝑊𝐻 + 𝑏) (9) 

where 𝑊 and 𝑏 are the output layer weights and bias, and σ is a non-linear activation function (ReLU in this 

implementation). 

 

2.4. Evaluation Metrics 

The performance of the proposed model was evaluated by comparing it with several state-of-the-art 

models using standard evaluation metrics. Since Drug-Target Affinity (DTA) prediction is a regression task, 

the three most commonly used metrics in DTA studies are Mean Squared Error (MSE), Concordance Index 

(CI) as proposed by Gönen and Heller [45], and regression towards the mean (𝑟𝑚
2 ) introduced by Roy et al. 

[46]. MSE quantifies the average squared difference between the predicted and actual values. A smaller MSE 

value indicates better model performance, as it reflects a lower degree of error in the predictions. The formula 

for calculating MSE is shown in equation (10). 

 𝑀𝑆𝐸 =
1

𝑁
 ∑(𝑦𝑖

` −  𝑦𝑖)2

𝑛

𝑖=1

 (10) 

CI is a metric that measures predictive accuracy by checking whether, for two randomly selected drug–

target pairs, the predicted rankings mirror their actual binding affinities. Specifically, if 𝑦𝑖 − 𝑦𝑗, then the 

predicted binding affinity 𝑏𝑖should be greater than 𝑏𝑗. A higher CI value indicates better predictive 

performance. The CI is calculated in equation (11). 

 𝐶𝐼 =
1

𝑧
∑ ℎ(𝑏𝑖 − 𝑏𝑗)

𝑦𝑖−𝑦𝑗

 (11) 

Here 𝑧 is a normalization constant and ℎ(𝑢) is the step function. CI evaluates the consistency of prediction 

rankings with the actual dataset [47]. 

The 𝑟𝑚
2  metric assesses the external predictive performance of a regression model. It evaluates how closely 

a variable approaches the mean in subsequent measurements, even for variables with extreme values. This 𝑟𝑚
2  

is defined as in equation (12). 

 𝑟𝑚
2 = 𝑟2 ×  (1 − √𝑟2 − 𝑟0

2) (12) 

where 𝑟2 is the squared correlation coefficient with an intercept, and 𝑟0
2 is the squared correlation coefficient 

without an intercept [22]. This metric is handy for assessing the model's generalization performance on unseen 

data. 

 

2.5. Experimental Design 

We used PyTorch and PyTorch Geometric libraries to develop the proposed model. For drug 

preprocessing, which involved converting drug SMILES into graphs, we used the RDKit library. Table 4 

provides an overview of the hyperparameter settings used in our experimental design. These hyperparameters 

value were chosen based on current knowledge from previous studies and experiments. This values were further 

validated when we conducted a manual experiment with various learning rate (0.001, 0.0001, 0.0005), batch 

size values (32, 128, 512), and dropout rate values (0.1, 0.2, 0.3). Specifically, values for the learning rate 

(0.0005), batch size (512), dropout rate (0.2), and optimizer (Adam) were adopted because they consistently 

demonstrated strong performance in models for similar drug-target prediction tasks. Due to computational 

limitations, the model was trained for 250 epochs. Additionally, 20% of the training data was used as the 

validation set. 

Several experimental scenarios were conducted to evaluate the model’s performance. In the first 

experiment, we performed a parameter search to determine the best configuration for achieving optimal 

performance. Three key parameters were explored: the hidden size for the BiLSTM, the number of heads in 
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the GAT layers, and the number of heads in the two-side multi-head attention mechanism. All parameter 

explorations were conducted sequentially. First, we determined the best hidden size value for the BiLSTM 

while keeping the number of heads in the GAT and the attention mechanism fixed at two. Once the best hidden 

size was established, we identified the optimal number of heads for the GAT. Lastly, we determined the best 

number of heads for the attention mechanism with BiLSTM hidden size and GAT heads best value. The details 

of the parameter settings can be seen in Table 5. 

 

Table 4. Hyperparameter Settings for Training 
Hyperparameter Value 

Learning rate 0.0005 

Epoch 250 

Batch size 512 

Dropout rate 0.2 

Loss Function (MSE) 

Optimizer Adam 

 

Table 5. Parameter Exploration Details 
Parameter Value Description 

BiLSTM Hidden 

Size 

16, 32, 

64 

Number of units in the hidden layer of the BiLSTM to increase the model’s 

capacity to learn complex sequential dependencies 

GAT Head 2, 4, 8 
Number of attention heads in the GAT layers. Higher values allow the model to 

capture diverse relationships among nodes. 

Attention 

Mechanism Head 
2, 4, 8 

Number of concatenated attention heads in the two-side multi-head attention 

mechanism. Controls the richness of modality interactions. 

 

For the second experiment, after the best key parameters were all obtained, we compared out the proposed 

model with baseline models and state-of-the-art benchmark models from previous studies. For drug embedding, 

the Graph Convolutional Network (GCN) [48] was chosen due to its foundational role in graph-based 

representation learning and its widespread adoption for aggregating information from neighbouring nodes to 

capture the structural properties of molecular graphs. This comparison allows us to assess whether the proposed 

Graph Attention Network (GAT)-based approach, with its ability to incorporate attention mechanisms, 

provides a meaningful improvement in modeling complex molecular structures. For protein embedding, 

Recurrent Neural Networks (RNN) [49] and Gated Recurrent Units (GRU) [50] were used as baselines, as they 

are commonly employed in sequential data. RNNs effectively model sequential dependencies, while GRUs 

enhance efficiency by addressing the vanishing gradient problem, making them suitable for long sequence 

processing. These models serve as robust benchmarks for evaluating the proposed BiLSTM, which introduces 

bidirectional processing to capture contextual relationships within protein sequences more effectively. 

Additionally, we compared our proposed model with two recent state-of-the-art models: GraphDTA [32] and 

MSGNN-DTA [39]. These studies is chosen because their code is publicly available, and therefore we were 

able to reproduce it. To ensure a fair comparison, we re-ran these models in the same environment using the 

same dataset and experimental setup as in the paper but limited the training epoch to 250 epochs, which is the 

same as our experiment setup. This comprehensive comparison enables us to assess whether our model not 

only outperforms baseline models but also advances the current state-of-the-art in drug-target affinity 

prediction. 

 

3. RESULTS AND DISCUSSION   

3.1. Parameters Exploration 

In the first experiment, we conducted parameter exploration for three key parameter for out proposed 

model which using Graph Attention Networks (GAT) for drug embeddings and Bidirectional Long Short-Term 

Memory (BiLSTM) for proteins embeddings combines these embeddings through a two-side multi-head 

attention mechanism for prediction. Therefore, the three parameters we explore were BiLSTM hidden size, 

number of GAT heads, and number of attention mechanism heads for both dataset, Davis and KIBA.  For this 

experiment, we consider the value of CI  as the overall metric measurement to define the model with the best 

parameters. For the Davis Dataset, the results are summarized in Table 6. The BiLSTM hidden size, 

representing the number of units in its hidden layer, was varied among 16, 32, and 64. The results show that 

increasing the hidden size improved performance, with the best results obtained at a hidden size of 64, 

achieving an MSE of 0.3269, a CI of 0.8632, and  𝑟𝑚
2  of 0.4820. These improvements highlight the importance 

of larger hidden sizes in capturing complex sequential dependencies in protein sequences. For the number of 
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GAT heads, values of 4, 8, and 10 were tested. The optimal performance was achieved with 8 heads, produce 

an MSE of 0.3361, a CI of 0.8621, and  𝑟𝑚
2   of 0.4907. Increasing the number of heads enhances the model’s 

expressiveness to capture important information on molecular and motif graph. using fewer heads, such as two, 

lacked the diversity needed for effective graph representation learning. However, a further increase to 10 heads 

resulted in a performance decline, likely due to noise and overfitting. The number of heads in the two-side 

multi-head attention mechanism was also tested between 4, 8, and 10. The best performance was observed with 

8 heads, achieving the lowest MSE of 0.3209, the highest CI of 0.8646, and  𝑟𝑚
2   of 0.5046. This indicates that 

the richness of the interaction modeling is maximized at this configuration, effectively aggregating and fusing 

multi-scale features from molecules, motifs, and proteins to capture complex interactions. The decline in 

performance at 10 heads suggests that excessive attention heads can introduce noise or lead to overfitting. The 

optimal configuration identified through these experiments utilized a BiLSTM Hidden Size of 64, 8 GAT 

heads, and 8 attention heads in the two-side multi-head attention mechanism. This configuration allowed the 

model to capture richer relationships among molecular, motif, and protein features. 

 

Table 6. Parameter Exploration Results for Davis Dataset 

Parameter Value MSE ↓ CI ↑ 𝒓𝒎
𝟐 ↑ 

BiLSTM Hidden Size 

16 0.3550 0.8546 0.4542 

32 0.3524 0.8591 0.4310 

64 0.3269 0.8632 0.4820 

GAT Head 

4 0.3394 0.8591 0.4463 

8 0.3361 0.8621 0.4907 

10 0.3410 0.8546 0.4698 

Attention Mechanism Head 

4 0.3354 0.8600 0.4348 

8 0.3209 0.8646 0.5046 

10 0.3671 0.8553 0.4475 

 

For the KIBA dataset, as shown in Table 7, The best BiLSTM hidden size was also 64, achieving the 

lowest MSE of 0.1939, the highest CI of 0.8541, and  𝑟𝑚
2   of 0.4804. These results confirm that larger hidden 

sizes enhance the ability to capture long-range dependencies in protein sequences. For the GAT heads, the best 

configuration was 8 heads, resulting in an MSE of 0.2002, a CI of 0.8555, and  𝑟𝑚
2   of 0.4343. Similar to the 

Davis dataset, this configuration effectively balances complexity and representation capacity. Increasing to 10 

heads led to a slight degradation in performance, mirroring the results observed in the Davis dataset. 

Interestingly, the optimal configuration for the attention mechanism was 4 heads, yielding the lowest MSE of 

0.1864, the highest CI of 0.8616, and  𝑟𝑚
2   of 0.6672. This differs from the Davis dataset, where 8 heads were 

optimal, striking a balance between representational capacity and computational efficiency. The better 

performance with fewer attention heads may be attributed to the size of the dataset and dataset-specific 

characteristics such as different affinity value calculation. Overall, the optimal configuration for KIBA dataset 

is a BiLSTM Hidden Size of 64, 8 GAT heads, and 4 attention heads in the two-side multi-head attention 

mechanism. 

 

Table 7. Parameter Exploration Results for KIBA Dataset 

Parameter Value MSE ↓ CI ↑ 𝒓𝒎
𝟐  ↑ 

BiLSTM Hidden Size 

16 0.2046 0.8486 0.4621 

32 0.2115 0.8434 0.4853 

64 0.1939 0.8541 0.4804 

GAT Head 

4 0.1934 0.8536 0.7016 

8 0.2002 0.8555 0.4343 

10 0.1992 0.8521 0.4699 

Attention Mechanism Head 

4 0.1864 0.8616 0.6672 

8 0.1978 0.8517 0.5057 

10 0.1997 0.8507 0.5665 

 

These results underscore the importance of carefully selecting model parameters tailored to each dataset, 

as seen in the differences between the Davis and KIBA datasets. However, due to current computational power, 

we are only able to do a parameter exploration with small sample values. further exploration of the parameter 

space is warranted to provide deeper insights into the sensitivity of the model to specific changes. For example, 

expanding the range and granularity of hidden sizes (e.g., using increments of 16, 32, and 64) could reveal 

more nuanced trends in model performance. Conducting and experiment on how variations in network 
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structure, such as employing different GAT layers or alternative attention mechanisms, might influence the 

model’s predictive accuracy across diverse contexts. 

 

3.2. Overall Comparison 

In the second experiment, we compared our proposed model with baseline models. For our proposed 

model, the learning curves for both the Davis and KIBA datasets, depicted in Fig. 4, show rapid convergence 

of the training loss during the initial epochs, followed by a declining trend. Although the regularization 

technique (L1 and L2) and early stopping were not utilized, the risk of overfitting was partially mitigated 

through careful dataset splitting (80% training, 20% testing) and consistent monitoring of validation loss during 

training. These measures helped ensure that the model maintained a balance between training performance and 

generalization. For both datasets, the validation loss closely mirrors the training loss, indicating that the models 

generalize well to unseen data and avoid overfitting. These results also reveal the effectiveness of the gated 

skip-connection mechanism in stabilizing the training process and avoiding gradient degradation even when 

using five GAT layers for each drug molecule embedding and drug motif embedding, respectively. This is 

evident from the smooth convergence of training and testing losses in both datasets. 

 

 
Fig. 4. Proposed Model Training and Validation Loss Curves of Davis (left) and KIBA (right) Dataset 

 

The performance results for the Davis dataset, shown in Table 8, highlight the strengths of the proposed 

model (GATBILSTM). This model achieved the lowest MSE (0.2369 for the training set and 0.3209 for the 

testing set), effectively minimizing prediction errors compared to baseline architectures. Additionally, it 

achieved the highest CI values (0.8874 for training and 0.8646 for testing), demonstrating its superior capability 

to rank drug-target binding affinities correctly. The model’s  𝑟𝑚
2   values (0.5432 for training and 0.5046 for 

testing) further demonstrate its robustness in capturing the variance in binding affinity data. Notably, the GCN-

BiLSTM model emerged as the second-best performer across all baselines, suggesting that the BiLSTM 

component better captures sequential protein features compared to RNN and GRU. Furthermore, GCN-based 

models, while competitive, displayed slightly lower performance metrics than their GAT counterparts. This 

finding suggests that the inclusion of attention mechanisms (GAT) enables more effective learning of complex 

molecular and motif representations, which are critical for accurate drug-target affinity prediction. Overall, the 

results from the Davis dataset demonstrate that the proposed GATBILSTM model not only enhances prediction 

accuracy but also maintains strong generalization capability, as evidenced by the close alignment between 

training and testing metrics. 

 

Table 8. Model Performance Comparison for Davis Dataset 

Model  MSE ↓ CI ↑ 𝒓𝒎
𝟐  ↑ 

Drug Protein  Train Test Train Test Train Test 

GCN RNN  0.2848 0.3505 0.8700 0.8537 0.4598 0.4580 

GCN GRU  0.2520 0.3338 0.8819 0.8599 0.4921 0.4406 

GCN BILSTM  0.2511 0.3370 0.8865 0.8599 0.4236 0.4596 

GAT RNN  0.3161 0.3781 0.8629 0.8451 0.4372 0.3963 

GAT GRU  0.2829 0.3527 0.8707 0.8545 0.3981 0.3777 

GAT BILSTM  0.2369 0.3209 0.8874 0.8646 0.5432 0.5046 

 

For the KIBA dataset, as shown in Table 9, the proposed GAT-BiLSTM model demonstrated substantial 

improvements over all baseline models. It achieved an MSE of 0.1096 for the training set and 0.1864 for the 
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testing set, surpassing all other architectures in prediction accuracy. Its CI values, 0.8928 for training and 

0.8616 for testing, indicate exceptional ranking ability, outperforming the baseline models. Furthermore, 

the  𝑟𝑚
2  values, 0.8127 for training and 0.6672 for testing, highlight the model’s strong predictive power and its 

ability to capture variance in binding affinity data, even in a more complex and larger dataset like KIBA. 

Compared to the Davis dataset, the improvement in predictive performance for the KIBA dataset can be 

attributed to its richer feature representations and larger sample size, which provide more robust training 

opportunities for the model. The two-sided multi-head attention mechanism in the proposed model likely 

played a crucial role in modeling the interdependencies among drug molecular graph embeddings, motif graph 

embeddings, and protein sequence embeddings. This advanced attention mechanism enabled better context 

aggregation, resulting in higher prediction performance. While GCN-based models were competitive, the 

GAT-based models consistently outperformed them, indicating the superiority of attention mechanisms in 

learning complex molecular and motif representations. Overall, the results for the KIBA dataset emphasize the 

effectiveness of the proposed GATBILSTM model in capturing intricate drug-target interactions and delivering 

superior prediction accuracy across a larger and more challenging dataset. 

 

Table 9. Model Performance Comparison for KIBA Dataset 

Model  MSE ↓ CI ↑ 𝒓𝒎
𝟐  ↑ 

Drug Protein  Train Test Train Test Train Test 

GCN RNN  0.1522 0.1990 0.8680 0.8489 0.7787 0.5090 

GCN GRU  0.1416 0.1933 0.8768 0.8559 0.7689 0.5644 

GCN BILSTM  0.1382 0.1937 0.8781 0.8571 0.7627 0.5493 

GAT RNN  0.1587 0.2148 0.8650 0.8426 0.7589 0.4622 

GAT GRU  0.1520 0.2065 0.8664 0.8439 0.7004 0.5818 

GAT BILSTM  0.1096 0.1864 0.8928 0.8616 0.8127 0.6672 

  

Unlike conventional GCN-based models, which cannot focus on specific nodes or connections, the 

attention mechanism in GAT ensures that critical features within the drug structure are prioritized during 

feature extraction. This leads to improved molecular graph embeddings, as reflected in the superior 

performance metrics. Similarly, the use of BiLSTM for protein sequence processing capitalizes on its ability 

to capture long-term dependencies and contextual relationships within sequential data. This makes it 

particularly suited for encoding the amino acid sequences of proteins, where local and global sequence contexts 

are critical for understanding binding mechanisms. The results indicate that BiLSTM outperforms RNN and 

GRU models, which lack sufficient capacity to model such dependencies. 

We also compared our prosed model with benchmark model from previous study, GraphDTA and 

MSGNN-DTA, as shown in Table 10. On the Davis dataset, our proposed model demonstrated the highest 

Concordance Index (CI) and 𝑟𝑚
2 , showcasing its superior capability to rank drug-target binding affinities 

correctly and explain variance in binding affinity data. While the MSE of the proposed model (0.3209) was 

slightly higher than GraphDTA (0.3079), the substantial improvements in CI and 𝑟𝑚
2  underscore its enhanced 

predictive power in capturing complex relationships between drug and protein features. Similarly, on the KIBA 

dataset, the proposed model achieved the lowest MSE, the highest CI, and the highest 𝑟𝑚
2 , further demonstrating 

its robustness and scalability in more diverse and complex datasets compared to the baseline models. 

The superior performance of the proposed model can be attributed to several key factors. First, the use of 

GAT as the drug encoder allows the model to effectively capture complex molecular interactions by assigning 

adaptive attention weights to critical nodes and edges within molecular and motif-level graphs. While 

MSGNN-DTA combines GAT and GCN for feature learning, it is not enough to fully exploit the molecular 

structure and motif-level features due to the static nature of GCN, which limits its ability to capture dynamic 

relationships and complex dependencies within the graph. In contrast, GAT’s adaptive attention mechanism 

provides a more flexible and expressive representation of these features, leading to enhanced performance. 

Second, the incorporation of BiLSTM as the protein encoder enables the model to learn long-term dependencies 

and contextual relationships within protein sequences, outperforming CNN-based protein encoding used in 

GraphDTA. For MSGNN-DTA, the use of a weighted protein graph adds additional layers of complexity 

without significantly improving the ability to capture sequential relationships. This increases computational 

overhead while providing only marginal gains in predictive accuracy. BiLSTM, on the other hand, effectively 

models both local and global dependencies in amino acid sequences with a lower computational cost compared 

to graph-based methods for protein representation. Third, the two-sided multi-head attention mechanism serves 

as a critical component in fusing drug and protein features, effectively modeling their interactions. By 

dynamically weighting the contributions of molecular graphs, motif graphs, and protein sequences, the 

mechanism captures the complex dependencies between drugs and their targets. This not only enhances 

prediction accuracy but also addresses the limitations of simple concatenation methods used in previous 
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studies, such as the fully connected layers employed by GraphDTA and the self-attention mechanisms used in 

MSGNN-DTA. The two-sided multi-head attention mechanism leverages the complementary strengths of the 

fused features, enabling the model to better learn the intricate relationships required for accurate drug-target 

affinity predictions. 

 

Table 10. state-of-the-art benchmark comparison for Davis & KIBA dataset 

Dataset Model 
Drug 

Encoder 

Protein 

Encoder 

Interaction 

Modelling 
MSE ↓ CI ↑ 𝒓𝒎

𝟐 ↑ 

Davis 

GraphDTA GCN CNN FC 0.3079 0.8498 0.4700 

MSGNN-DTA GATGCN Self AM 0.3301 0.8628 0.4444 

Proposed Model GAT BILSTM TS-MH AM 0.3209 0.8646 0.5046 

KIBA 

GraphDTA GCN CNN FC 0.2529 0.8176 0.5995 

MSGNN-DTA GATGCN Self AM 0.1916 0.8504 0.6185 

Proposed Model GAT BILSTM TS-MH AT 0.1864 0.8616 0.6672 

 

The prediction accuracy is further illustrated in Fig. 5. When the predicted value closely matches the 

actual value, it indicates better model performance, meaning the sample points should align near the diagonal 

line (green line). For the Davis dataset, the dense region of 𝑝𝐾𝑑  values fall between 5 and 6 on the X-axis, 

aligning with the actual data distribution. Similarly, the X-axis density of KIBA scores ranges from 10 to 14. 

In both datasets, the sample points are distributed close to the straight line (p = y. This further demonstrates 

the strong predictive performance of the integration of GAT and BiLSTM, coupled with the two-side multi-

head attention mechanism, which facilitates effective feature fusion, allowing the model to capture complex 

interaction patterns between drugs and proteins with high precision.  

However, these advantages come with the trade-off of increased computational complexity. The GAT 

layers, with their quadratic scaling relative to the number of graph nodes, and the two-side multi-head attention 

mechanism, with its demand for parallel processing across multiple attention heads, present significant 

challenges in terms of scalability. These challenges could impact the practical application of the model in large-

scale drug discovery projects. Future work should explore optimization strategies, such as sparse attention 

mechanisms, graph sampling techniques, and hardware accelerations, to balance the computational demands 

while maintaining the model’s superior predictive performance. Despite these limitations, the proposed model 

demonstrates its potential as a robust and effective tool for drug-target affinity prediction, particularly in 

scenarios where accuracy outweighs computational constraints. 

 

  
Fig. 5. Actual vs. Predicted Binding Affinities Values of Davis (left) and KIBA (right) Dataset 

 

4. CONCLUSION 

This study proposed a novel framework for predicting drug-target binding affinities using Graph 

Attention Networks (GAT), BiLSTM, with two-side multi-head attention mechanism. The proposed model 

achieved the lowest MSE, highest CI, and highest 𝑟𝑚
2  among all tested architectures for both datasets. These 

results confirm the model's effectiveness in capturing structural and sequential features of drugs and proteins, 

as well as their interactions. The integration of molecular and motif-level drug graphs with BiLSTM-encoded 

protein sequences provides comprehensive feature representations, while the multi-head attention mechanism 

enables robust feature fusion and improved predictive performance. The findings of this study demonstrate the 

potential of the proposed approach as a reliable computational tool for DTA prediction, reducing reliance on 

time-consuming and costly laboratory experiments. 
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Despite these promising results, this work acknowledges certain limitations. The evaluation was limited 

to the Davis and KIBA datasets, raising questions about the model’s generalizability to other datasets or types 

of drug-target interactions. Additionally, the computational complexity of the GAT layers and multi-head 

attention mechanisms, while enabling high performance, poses challenges for scalability in large-scale drug 

discovery projects. Strategies such as sparse attention mechanisms, graph sampling, and hardware optimization 

should be explored to address these challenges. Future research should test the model across additional datasets 

with more diverse drug and targets representation, such as molecular fingerprints, protein subsequence’s, and 

protein 3D structures, to assess its robustness and broader applicability. By extending this framework to 

incorporate additional features and optimize computational efficiency, future improvements could enhance the 

model’s utility in real-world drug discovery processes, enabling faster and more accurate identification of 

potential therapeutic candidates. 
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