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1. INTRODUCTION  

Globally, 15 million people are affected by stroke every year, making it the leading cause of motor 

disability [1], [2].  Although a significant portion fully recovers, a tiny percentage does so [3].  One answer to 

the issue of medical rehabilitation is robotic rehabilitation, a quickly expanding area that sees the creation of 

numerous new items each. The lack of qualified medical professionals, lengthy and intricate procedures, and 

the high demand for quality healthcare all contribute to this problem [4], [5]. 

A stroke is defined as a neurological deficit attributed to an acute focal injury of the central nervous 

system occurring on a vascular basis [6]. A stroke occurs when blood arteries become blocked, resulting in 

bleeding and a lack of oxygen flow to the brain [7]. Stroke is historically termed cerebrovascular accident 

(CVA), however, Burns et al. [8] stated that the term "cerebrovascular accident" (CVA) is outdated and should 

be avoided as it implies that stroke is an accident. About ten minutes is the maximum time the brain can 

function normally without glucose or oxygen [9]. The paralysis of a limb or limb on one side of the body is a 

common symptom of this condition, which happens when the brain region on the opposite side stops working. 

When problems arise with the lower limbs, rehabilitation is key to getting back on the feet and walking 

normally. There are a variety of rehabilitation treatment options that aim to enhance walking abilities [10].  

Many patients feel better within the first six months following a stroke. The road to recovery becomes 

more winding but not impossible [11]. Stroke significantly impacts Activities of Daily Living (ADL), with 

many patients experiencing dependency on personal care, mobility, and communication [12]. ADL dependency 

within the first two days post-stroke can predict dependency at 3 and 12 months [13]. ADLs in stroke patients 

refer to essential self-care tasks that are often impaired post-stroke. It is now possible to begin an intervention 

program to retrain the ability to do ADLs with forceful motions and functional trajectories. An actual task 
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increases the likelihood of neuroplastic alterations (brain rewiring) in which the relearned movement is 

integrated [14]. 

Lokomat [15], [16] costs €330,000 and Gait Trainer GT1 [17] costs €30,000; both are considered to be 

among the costliest robot-assisted gait trainers now on the market [18]. There are active and passive robot 

systems available for gait rehabilitation. The patient's limbs must provide enough effort for the passive device 

to move [19].  

The kind of motions that walking rehabilitation robots can do for patients are also distinct. In the gait 

phase, an "exoskeleton" controls the movement of the hip, knee, and ankle, but a "robot end-effector" controls 

the movement of the foot, which is often supported by a footplate, and follows a predetermined trajectory, 

allows one to practice their gait without really walking. According to one definition, an exoskeleton is a 

dynamic anthropomorphic mechanical apparatus donned by the user, securely fastened to the body, and 

responds to the user's movements [20], [21]. Robots with end-effectors and those with exoskeletons each have 

uses and benefits. Fig. 1 compares various devices [22]. 

There are examples of commercially available walking trainers that include robots such as RehaStim [23] 

of Berlin, Germany, ReWalk [24], [25], [26] and Lokomat (Hocoma, Switzerland). Lokomat moves along a 

treadmill following a set of predefined paths. End-effector robots, like the G-EO System, made by 

Rehabilitation Technology AG in Switzerland follow the natural gait pattern by balancing on movable supports.  

 

 
Fig. 1. Examples of walking movement trainer robot devices with different approaches [27] 

 

Other than gait trainers, there are early mobilization therapy robots, for example, VEMOTION from 

Reactive Robotics (Germany). The VEMOTION robotic system was developed to assist with early 

mobilization in intensive care units, demonstrating feasibility in initial trials [28]. Therapy of early mobilization 

is a systematic method for increasing physical activity and mobility [29]. Early mobilization after stroke is 

believed to improve outcomes associated with stroke unit care [30].   It can improve functional capacity, muscle 

strength, and health-related quality of life [31], [32]. Many robotic systems facilitate (initial) mobilization [33], 

[34].  Fig. 2 illustrates that the VEMOTION® robotic assistance system is designed to increase the ease of 

(initial) mobilization operations [35], [36].  

 

 
Fig. 2. Robot-assisted early mobilization with VEMOTION [37] 

http://issn.lipi.go.id/issn.cgi?daftar&1368096553&1&&
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The device being developed in this research has a unique selling point. It automates and modernizes a 

medical rehabilitation system while utilizing many local components, resulting in much lower production costs 

than other goods on the market. Research is currently concentrated on designing mechatronic items and 

developing medium-tech medical equipment. This research aims to contribute to the solution to Indonesia's 

worldwide challenge of health independence [38]. The production of domestic medical devices is expected to 

reduce medical costs. 

Making walking aids for medical rehabilitation significantly less expensive than imported manufactured 

items is now the biggest challenge. Therefore, the research question is how to design and manufacture a 

prototype for this hardware.  

Therefore, this research contributes to the medical community by generating a new concept of low-cost 

robot-assisted physical therapy which will be very helpful for the world of physiotherapy. Secondly, this 

research provides less complicated hardware design and control algorithm software. In terms of the 

effectiveness of therapy, the use of this equipment will guarantee consistency of position and speed compared 

to human therapists. Especially if the therapist has to work the whole day. 

 

2. METHODS  

Frugal innovation is a comprehensive word that includes diverse efforts delivering efficient functional 

solutions to prevalent issues faced by the majority, utilizing minimal resources [39], [40], [41]. Fig. 3 shows 

that this research demonstrates the innovation process. Accurate mechanisms are known to be more expensive. 

However, the device might not be perfect if we utilize inexpensive mechanisms or electrical parts. Because of 

this, we need to employ a new procedure for optimization: optimization with a control algorithm.  

Making walking aids for medical rehabilitation significantly less expensive than imported manufactured 

items is now the biggest challenge.  

 

 
Fig. 3. Mechanical compensation using a control algorithm 

 

Fig. 4 shows the overall framework for closed-loop control in early mobilization trainers. The gait pattern 

generator is designed to produce voltage signals that happen repeatedly. The exoskeleton's DC motor will be 

controlled by a position controller that amplifies current and provides output signals based on a proprietary 

control algorithm. The encoders and sensors that measure the exoskeleton's knee and hip positions will supply 

the actual values. 

 

 
Fig. 4. The closed-loop control system of a robotic early mobilization trainer  

 

2.1. Mechanical Design 

The links of this device mimic the skeletal framework of a limb or other bodily component. A thorough 

evaluation of these links has been carried out up to this point [42], as shown in Fig. 5. The exoskeletons were 

classified into two groups: medical and non-medical systems. The system being constructed and investigated 

is included in the medical exoskeleton. Consider how similar the exoskeletons of the lower limbs are to those 

of the knee and hip.  Fig. 6 presents the biological models of the hip and knee joints [43].  The lower limbs' 

motion when people walk is shown in Fig. 7 [44]. 

 

http://issn.lipi.go.id/issn.cgi?daftar&1368096553&1&&
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Fig. 5. Classification of exoskeletons according to their usage [32] 

 

  

Fig. 6. (a) Model and (b) mechanical design of hip and knee in sagittal plane [33] 

 

 
Fig. 7. Kinematics of lower limb joints during gait [34] 

(+) hip 

flexion 

(-) 

knee 

flexion 
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2.2. Electronic circuit 

Fig. 8 illustrates a streamlined closed-loop control system that will be implemented on the robot Fig. 9. 

depicts the wiring schematic of this system. The 24-volt battery will supply power to DC motors and electronic 

circuits. The voltage regulator will transform 24 volts into 5 volts for the electrical circuit. The trajectory of 

the manipulator's movement is stored in the memory of Arduino Mega [45] The microcontroller then 

incessantly relays positional data to the motor. The BTS7960 will amplify the current [46] motor driver to 

ensure that the PG56 dc motor [47] is suitably powered.  The encoder will relay the exact position to the 

microcontroller as input. The calculated voltage value will be sent to the driver circuit.  

 

 
Fig. 8. Closed-loop control block diagram of an early mobilization trainer robot [48] 

 

 
Fig. 9. Microcontroller connection diagram and motor drive system [48] 

 

2.3. Control Algorithm 

PID controllers are widely used in rehabilitation robotics due to their simplicity and effectiveness. They 

have been applied to various rehabilitation devices, including upper limb exoskeleton [49] and lower limb 

exoskeleton [50], [51]. The PID controller is the most prevalent choice because of its exceptional durability 

and straightforward installation. PID denotes the Proportional Integral Derivative controller [52]. PID is a 

traditional algorithm that employs the notion of feedback loops. The PID controller is already popular in the 

field of medical rehabilitation [53], [54]. The "error" is ascertained by the disparity between the set point and 

the measured output. The PID controller adjusts the output of the control process to seek and reduce the error. 

The controller's PID algorithm employs three distinct constant control parameters: P, I, and D, which denote 

the proportional, integral, and derivative functions, respectively. P represents the current error, I denotes the 

cumulative sum of prior errors, and D signifies the anticipated future error. The subsequent equation (1) 

predicated on temporal error is employed: 

 
𝑢(𝑡) = 𝐾𝑝(𝑒) +  𝐾𝑖 ∫ 𝑒 (𝑡)

𝑡

0

𝑑𝑡 +  𝐾𝑑

𝑑

𝑑𝑡
 𝑒 (𝑡)

 
(1) 

where 𝑦 is output, 𝑟 is set point, 𝑢 is control, 𝑒 is error, 𝐾 is proportional constant, 𝑇𝑖 is constant of integral 

time, 𝑇𝑑 is constant of derivative time. 

During the test, the PID constants are tuned when the system has a nominal load that represents the 

average of a human leg. The control signal 𝑢(𝑡) will be sent as a PWM signal to the DC motor. 

 

http://issn.lipi.go.id/issn.cgi?daftar&1368096553&1&&
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3. RESULTS AND DISCUSSION 

Fig. 10 shows the prototype of the early mobilization therapy robot. It can be easily placed on the 

bedside. The length of the links can be modified based on the dimensions of the leg and thigh. 

 

.     
Fig. 10. Prototype of the early mobilization therapy robot 

 
The prototype of this device has been tested for its control performance both manually and 

automatically. Even though the movements designed are still simple, considering that the rehabilitation 

supported is initial, this research focuses on movement precision. Control algorithm testing has been carried 

out. Due to the choice of large motor torque and supported mechanical transmission with a large speed ratio, 

even though this device moves slowly, it is very strong and precise. This can be seen in the following pictures 

where the movement of the tool can follow the trajectory of the command given. For this experiment, the 

trajectory pattern is a triangle wave.  

Fig. 11 and Fig. 12 show the precision of movement in the hip joint with and without load. When used 

without load the resulting trajectory follows the programmed trajectory. However, there is a steady-state error 

when used with the load. Meanwhile, Fig. 13 and Fig. 14 show the stability (response) of the resulting 

movements in the hip joint, with and without load. When a load is applied the resulting response is quite good 

because there is no overshoot, and it follows the setpoint. 

 

 
Fig. 11. Movement trajectory in the hip joint without load 

 

Gaps between the setpoint trajectory and the actual system tracking do not affect the effectiveness of 

the therapy because it is just a response delay. The system tracking can follow the trajectory reference. A 

small gap on the corner when the system changes direction also does not affect the therapy. It is just a 

changing direction for testing purposes only. In real therapy, the speed of changing direction is not that fast. 

 

http://issn.lipi.go.id/issn.cgi?daftar&1368096553&1&&
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Fig. 12. Movement trajectory in the hip joint with load 

 

 
Fig. 13. Response to a Step input in the hip joint without load 

 

Fig. 13 shows a response system without load. Since the system was tuned using a nominal load, it 

shows a small overshot. The amount of the overshoot is 4 degrees, and the steady state error is 1 degree. 

However, the test was conducted in high-speed mode. In the therapy mode, the speed will be much slower.  

 

 
Fig. 14. Response to Step input at the hip joint with load 

 

Fig. 15 and Fig. 16 show the precision of movement in the knee joint with and without load. When there 

is no load, the resulting trajectory follows the programmed trajectory. However, when a load is applied there 

is an error (the difference between the programmed path and the output position). Meanwhile, Fig. 17 and Fig. 

http://issn.lipi.go.id/issn.cgi?daftar&1368096553&1&&
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18 show the stability (response) of the resulting movements in the knee joint, with and without load. When a 

load is applied the resulting response still has overshoot, and there is a steady-state error. The performance of 

this movement is summarised in Table 1. The RMSE analysis above shows that the control system without 

load performs better. Even so, when given a load, the system performs quite well in following the 

predetermined target trajectory. 

 

 
Fig. 15. Movement trajectory in the knee joint without load 

 

 
Fig. 16. Movement trajectory in the knee joint with load 

 

 
Fig. 17. Response to Step input at the knee joint with load 

http://issn.lipi.go.id/issn.cgi?daftar&1368096553&1&&
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Fig. 18. Response to a Step input in the knee joint without load 

 

Table 1. Root Mean Square Error (RMSE) of the movements 
Joint Error (RMSE) 

Hip joint with load 5279.361 

Hip joint no load 103.9663 

Hip joint step response no load 8666.336 

Hip joint step response with load 7011.209 

Knee joints have no load 1617.791 

Knee joint with load 3296.765 

Knee joint step response with load 7994.152 

Knee joint step response no load 7989.721 

 

4. CONCLUSION 

A low-cost robotic early mobilization trainer has been developed. This will be exceedingly beneficial in 

the context of rare and costly robotic early mobilization training equipment. This robotic early mobilization 

trainer employs a PID controller to facilitate the tracking of the gait trajectory. The experimental findings 

indicate that in the condition with load at the hip joint, the output of this device can follow the trajectory input 

precisely. For the knee joint, the output of this device can follow the trajectory input, but with a small steady-

state error. A 0,9 degree of steady-state error does not affect the effectiveness of the therapy. PID is enough 

for this system because it is a simple controller but enough to give such an effective movement for the therapy.  

Future study is to add a look-up table setting button. A look-up table consists of some PID constants 

based on the weight variation of a human leg. Therefore, a load variation can be handled easily.  
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