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1. INTRODUCTION  

Software refactoring is the process of improving the internal structure of software code without affecting 

its external behavior in order to improve the quality and maintainability of the code. Studies show that software 

code deteriorates over a period of time, leading to the accumulation of what is known as "technical debt", which 

refers to the postponement of necessary improvements [1]. This has led to the need to apply refactoring 

periodically in order to maintain the quality of the code [2].  

Restructuring improves software quality by increasing the speed and ease of responding to requirements. 

Restructuring improves software properties such as understandability, reusability, and software flexibility [3]. 

Refactoring has been used to identify and remove duplicate code, which leads to improving system quality [4].  

Challenges of implementing refactoring when dealing with large databases, when there is a high 

dependency between components, and the need for developers to coordinate with other teams [5]. Developers 
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maintainability without affecting its functionality and external behavior. As a 

result of the development of technologies, it has become necessary to apply 
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face challenges in identifying the right moments to refactor, as well as the risks that can occur when making 

unnecessary changes. When a developer manually searches or relies on experience to identify parts that require 

refactoring, identifies techniques, implements them, and then measures their impact on the program, the 

program may produce incorrect results [6].Research has shown that using machine learning techniques to 

identify refactoring opportunities has yielded more accurate results, helping to reduce reliance on personal 

intuition and individual experience [7].  

Most projects relied on the use of the Refactoring Miner tool (Tsantalis et al., 2018) and it gave highly 

efficient results in finding refactoring operations compared to other tools. This tool provides the ability to 

operate using the application programming interface, so it is more suitable for applications [8]. 

With the development of deep learning techniques, many attempts have emerged to use these techniques 

to support restructuring processes. These techniques focus on two categories where they are used to detect code 

smells, which indicate that there is a problem in the program and recommend implementing restructuring 

processes [9]. Researchers have proposed many techniques to support refactoring processes by identifying 

strategies such as code smell detection strategies. It was found that the most used techniques for detecting code 

smells are search-based techniques (30.1%), symptom-based techniques (19.3%), metrics-based techniques 

(24.1%) [10], and logical programming [11]. 

The refactoring process involves a set of steps designed to improve and effectively measure the quality 

of software code. The goal of these steps is to improve the structure of the code and make it more 

understandable and maintainable, which contributes to enhancing the overall performance of the program and 

helps reduce potential future complexity [12]. Fig. 1 explains the steps and activities involved in the refactoring 

process. First, the modules will be tested to ensure that the program works as expected without errors. The 

code is examined to identify problems based on indicators known as code smells. Based on the problem, an 

appropriate refactoring method is determined to solve the problem. The refactoring method is applied and then 

tests are conducted to verify that the original functionality of the program is not affected. After that, the quality 

of the code is measured after making the modifications using software quality standards [13].  

 

 
Fig. 1.  The Step in Refactoring Process 

 

The research was organized as follows: The second part addressed the clarification of restructuring 

recommendations that aim to identify appropriate opportunities for implementing restructuring in addition to 

identifying the best ways to improve the code. The third part addressed machine learning and its important role 

in predicting restructuring. The fourth part addressed code reviews that help identify problems and changes in 

the code and determine the extent of the need to implement restructuring methods. The fifth part addressed 
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deep learning and its use in predicting restructuring. The next part addressed restructuring methods, which 

explains some of the widely used restructuring methods. The seventh part addressed previous studies and 

researchers' results in predicting restructuring . The last part addressed the conclusions reached by the research 

by presenting the work of researchers in this field. 

 

2. REFACTORING RECOMMENDATION  

The goal of refactoring recommendations is to solve two main problems in the field of automated software 

refactoring. The first problem is to identify refactoring opportunities, which is to identify places in the code 

that can be improved. The second problem is to choose the right type of refactoring, which is to choose the 

optimal method for improving the code [14]. Researchers have proposed several methods for making 

refactoring recommendations, and these methods fall into three main categories:      

         

2.1. Metrics-Based and Rule-Based Approaches  

Quantitative metrics are commonly used to evaluate the design quality of software systems. However, 

these metrics may be insufficient when used alone to measure all aspects of the design. Therefore, an approach 

known as metrics-based detection strategy has been developed to detect deviations from good design principles. 

Using detection strategies, a developer can identify classes affected by a defect (e.g., God class, God method) 

[15]. A framework called DECOR has been proposed that represents a comprehensive methodology for 

identifying code and design defects. The methodology is based on steps to analyze the discovered defects and 

provide possible solutions. DETEX is a practical application of the DECOR methodology, enabling developers 

to identify defects at a high level of abstraction and automatically convert them into executable detection 

algorithms. DETEX has proven its efficiency when implemented on open source systems such as XERCES 

v2.7.0, where it resulted in a detection accuracy rate of 60.5% and a full recall 100% [16]. 

 

2.2. Search-Based Approaches 

Search-based software engineering (SBSE) is an important approach in the field of software optimization. 

Different heuristics such as genetic algorithms and ant colony optimization have been used to address complex 

problems such as refactoring software [17]. Researchers have proposed using Pareto optimization, which 

simplifies metric integration and provides users with multiple optimal refactoring options [18]. SBSE has been 

shown to be highly efficient in dealing with large and complex codes, and also balances multiple goals such as 

reducing complexity and improving performance [19]. In the process of software refactoring through search, 

solutions are represented in several ways such as the program itself, an abstract structure tree (AST), or an 

abstract model [20]. 

 

2.3. Machine Learning Approaches 
Machine learning can be used to analyze big data about software projects and identify which parts of the 

code need to be refactored the most based on quality and performance criteria. The FITTED framework is a 

methodology for evaluating the positivity or negativity of implementing refactoring techniques by comparing 

the current code to the optimal code, and it evaluates the quality of object-oriented classes based on their 

proximity to the optimal quality criteria. Data on refactorings was collected using the "RefactoringMiner tool. 

Based on this data,". a machine learning model was created with about 70% accuracy to predict when 

refactoring is needed in order to reduce technical debt [21] . 

Refactoring is a process that involves improving the design of a program by making transformations in the 

code without compromising its basic functionality. These transformations lead to improving the quality and 

efficiency of the code. Fig. 2. shows the activities involved in this process, which are illustrated by steps that 

show the implementation stages. This process depends on detecting code smells, which in turn indicate 

inefficient designs such as repetition, ambiguity, and inconsistency. Therefore, transformations are used to 

analyze and detect smells [22]. 

 

3. MACHINE LEARNING ALGORITHMS IN PREDICTING SOFTWARE REFACTORING 

Machine learning is used to predict refactoring through predictive models trained on data from previously 

refactored software projects. Six different machine learning algorithms are trained on data including more than 

two million refactorings from 11,149 software projects. The results showed that the random forest algorithm 

was more accurate in predicting refactorings, with an accuracy rate often exceeding 90% [23].  

Recent studies have proven the effectiveness of applying the SVM algorithm in predicting the code areas 

that require restructuring. The reason behind using this algorithm is its ability to perform data classification 

with high accuracy by forming an ideal linear interval within a multidimensional space, so it is effective in 

identifying the parts that require restructuring. The SVM algorithm contributes to enhancing the prediction 
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performance compared to other algorithms such as Naïve Bayes and Random Tree, where the prediction 

accuracy ranged between 84% and 93% and the F-measure accuracy ranged between 86% and 96% when 

applying optimization algorithms [24]. 

In Ratzinger et al.'s study, classification algorithms J48, LMT, Rip, and NNge were used to predict the 

appropriate areas for refactoring based on the project's development history [25]. Kumar and Sureka proposed 

an automated tool that aims to help developers identify the classes that need refactoring by using machine 

learning techniques such as LSSVM, PCA, and SMOTE [26]. 

 

 
                                                      Fig. 2.  Model refactoring process 

 

4. REFACTORING IN A CODE REVIEW 

Code reviews promote knowledge sharing among team members. These reviews help to improve code 

clarity. By using reviews, members can offer new and useful ideas. Refactoring allows for the immediate 

implementation of proposed ideas, making it easier to see the results of improvements and contributing to more 

organized and clear code [27]. Developers review code to identify changes that cause errors in the code. The 

refactoring-aware tool was built to identify changes that contain refactoring and differentiate them from other 

changes that may contain errors [28].  

While reviewing the code and discovering the presence of code smells that indicate complexity and 

excessive duplication, the developer works on applying refactoring techniques such as Extract Method, 

Rename Variables, Reduce Duplication. The goal of this application is to improve readability and remove 

duplication. The team works on manually reviewing the changes to ensure that the new code achieves the 

required goals. In addition, analysis tools such as SonarQube were used to analyze the impact of the changes 

[29]. 

 

5. REFACTORING PREDICTION THROUGH DEEP LEARNING        

Deep learning techniques in software engineering have contributed to solving many complex 

programming problems [30]. Deep learning (DL) techniques play a vital role in the feature discovery (FE) 

process [31]. CODEBERT is a pre-trained model that combines natural language and programming languages, 

which improves applications for example: It helps in searching for code to identify the appropriate code based 

on inputs written in Arabic, It leads to generating accurate text documents for code functions, CODEBERT 

was chosen because it provides an efficient conversion of code into vectors that can be applied to models, 

which leads to an easy training process [32].  

Recurrent neural networks (RNN), convolutional neural networks (CNN), and multi-layer perceptrons 

(MLP) are the most popular in the field of refactoring, with MLP proving to be the most promising in terms of 

performance[33] . 

 

6. REFACTORING METHODS 

Below is a brief explanation of each of the ten common restructuring methods that were selected [34], 

[35]. 

Add  Parameters (AP): When the method in programming requires additional data, this technique will simply 

be implemented, and a new element will be provided that passes the required data.       

Encapsulate Fields )EF(: This technique is used to change the access rights to data. Access is transferred from 

public fields to private fields. 

Extract Class (EC): When the current class is too large and contains multiple tasks, a new class is created, 

and the tasks and related fields are moved to the new class.  

http://issn.lipi.go.id/issn.cgi?daftar&1368096553&1&&
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Extract Methods (EM): Phrases are extracted from an unintelligible method and the phrases are assembled 

into a new method that is created. 

Hide Methods (HM): When a method is not used by other classes or is implemented only within the class 

hierarchy, the method is protected by implementing this technique. 

Inline Classes (IC): When a class has no future role, all methods are copied to another class and the 

unnecessary class is removed. 

Extract Interface (EI): When there is a section of the class interface that is used by many users, this technique 

will be used. 

Push Down Fields (PDF):  If a field is applied in only some of the subcategories, this technique moves that 

field from the supercategory to the relevant subcategories. 

Remove Parameters (RP): If the method does not need a particular parameter, that parameter is omitted. 

Rename Methods (MM): If a method does not perform its function clearly, the technique is used to modify 

the method name to something that better expresses its function. 

Table 1 shows the use of seven case studies (BMS, PMS, JGraphX, JHotDraw, Xerces, and jEdit) and the 

collection of some object-oriented metrics (DSC, ANA, DAM, DCC, CAM, MOA, NOP, CIS, NOM) used to 

measure the quality of internal features such as (abstraction, encapsulation, coupling, cohesion, composition, 

inheritance, and complexity), and refactoring techniques (EM, MM, EI, PDF) were applied through the case 

studies. Each refactoring technique was applied to determine its impact on internal quality. 

 

Table 1. The table shows the refactoring methods (EM, MM, EI, PDF) that affect object-oriented metrics in 

the studies described below 

Case  

study 
RT TA 

DSC CIS MOA DAM NOP CAM DCC ANA NOM 

 -   -   -   -   -   -   -   -   -  

BMS 

EM 41 0 41 0 41 0 0 0 41 0 0 41 0 0 41 0 0 4 37 0 41 0 0 41 0 41 0 0 

PDF 3 0 3 0 0 3 0 0 3 0 0 3 0 0 3 0 0 3 0 0 3 0 0 3 0 0 3 0 
EI 4 0 0 0 0 4 0 0 4 4 0 0 0 0 4 0 4 0 0 4 0 0 0 0 4 0 0 0 

PMS 

EM 4 0 4 0 4 0 0 0 4 0 0 4 0 0 4 0 0 0 4 0 4 0 0 4 0 4 0 0 

MM 1 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0 0 1 0 1 0 0 

PDM 2 0 2 0 2 0 0 0 2 0 0 2 0 0 2 0 0 0 2 0 2 0 0 2 0 2 0 0 
EI 2 2 0 0 2 0 0 0 2 0 0 2 0 0 2 0 2 0 0 0 2 0 0 0 2 2 0 0 

Jhot 
DRAW 

EM 51 0 51 0 17 34 0 0 51 0 0 51 0 0 51 0 20 11 20 2 49 0 0 51 0 45 6 0 

MM 1 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0 0 1 0 1 0 0 
PDM 4 0 4 0 3 0 1 0 4 0 0 4 0 0 2 2 4 0 0 0 4 0 0 4 0 2 0 2 

EI 10 10 0 0 10 0 0 0 10 0 0 10 0 0 10 0 10 0 0 5 5 0 0 0 10 10 0 0 

JGRAP 

HX 

EM 42 0 42 0 42 0 0 0 42 0 0 42 0 0 42 0 23 0 19 0 42 0 0 42 0 35 7 0 

MM 15 0 15 0 12 3 0 0 15 0 0 15 0 0 15 0 10 1 4 1 14 0 0 15 0 12 3 0 

EI 13 13 0 0 12 1 0 0 13 0 0 13 0 0 13 0 9 4 0 2 11 0 0 0 13 13 0 0 

XER 

CES 

EM 61 0 61 0 61 0 0 0 61 0 0 61 0 0 61 0 16 10 35 3 58 0 0 61 0 54 7 0 

MM 31 0 31 0 31 0 0 0 31 0 0 31 0 0 30 1 18 1 12 7 21 3 0 31 0 21 10 0 
EI 12 12 0 0 11 1 0 0 12 0 0 12 0 0 12 0 7 5 0 4 8 0 0 0 12 12 0 0 

JEDIT 

EM 67 0 67 0 20 47 0 0 67 0 0 67 0 0 67 0 19 23 25 5 62 0 0 67 0 48 19 0 

MM 52 0 52 0 36 16 0 0 52 0 0 52 0 0 52 0 32 0 20 11 41 0 0 52 0 37 15 0 
PDF 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 

EI 10 10 0 0 10 0 0 0 10 0 0 10 0 0 10 0 10 0 0 1 9 0 0 0 0 10 0 0 

 

TA refers to the total number of times the refactoring techniques were implemented. The symbol ( ) It 

indicates that the restructuring technique has led to an improvement in the quality attribute. The symbol ( ) it 

indicates that the restructuring technique has led to a weakening of the quality attribute. The symbol (-) it 

indicates that the restructuring technique did not lead to any change in quality. 

Table 2 shows the use of seven case studies (LMS, BMS, PMS, JGraphX, JHotDraw, Xerces, and jEdit) 

and a set of metrics (reusability, flexibility, effectiveness, scalability, functionality, and understandability) used 

to measure external feature quality, and the refactoring techniques (RP, IC, AP, EF, EC, and HM), and the 

Total Quality Index (TQI) were applied across the case studies. Each refactoring technique was applied to 

determine its impact on external quality.  

TA refers to the total number of times the refactoring techniques were implemented. The symbol ( ) It 

indicates that the restructuring technique has led to an improvement in the quality attribute. The symbol ( ) it 

indicates that the restructuring technique has led to a weakening of the quality attribute. The symbol (-) it 

indicates that the restructuring technique did not lead to any change in quality. 
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Table 2. A summary of every refactoring methods (RP, IC, AP, EF, EC, HM) effect on external quality 

characteristics and TQI 
Case 

study 
RM TA 

Reusability Flexibility Effectiveness Extendibility Functionality Understandability TQI 

 -   -   -   -   -   -   -  

LMS 

EF 2 0 0 2 0 0 2 0 0 0 2 0 2 0 0 0 0 2 2 0 0 2 

EC 3 3 0 0 3 0 0 3 0 0 0 0 3 3 0 0 0 0 3 3 0 0 
HM 2 0 0 2 0 2 0 0 2 0 0 2 0 0 0 2 0 2 0 0 0 2 

IC 1 0 0 1 0 0 1 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 

BMS 

AP 1 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 
EC 7 7 0 0 7 0 0 7 0 0 0 0 7 7 0 0 0 0 7 7 0 0 

HM 32 0 0 32 0 32 0 0 32 0 0 32 0 0 0 32 0 32 0 0 0 32 

PMS 

AP 1 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 
EF 20 20 0 0 2 18 0 2 18 0 0 20 0 20 0 0 0 18 2 20 0 0 

EC 2 2 0 0 2 0 0 2 0 0 0 0 2 2 0 0 0 0 2 2 0 0 

HM 23 0 0 23 0 23 0 0 23 0 0 23 0 0 0 23 0 23 0 0 0 23 
IC 2 0 0 2 0 0 2 0 0 2 2 0 0 0 0 2 2 0 0 0 0 2 

RP 2 0 0 2 0 2 0 0 2 0 0 2 0 0 0 2 0 0 2 0 0 2 

jHOT 

Draw 

AP 16 0 16 0 0 16 0 0 16 0 0 16 0 0 16 0 0 16 0 0 16 0 

EF 39 39 0 0 7 32 0 7 32 0 0 39 0 39 0 0 0 28 11 39 0 0 

EC 13 13 0 0 13 0 0 13 0 0 0 0 13 13 0 0 0 0 13 13 0 0 

HM 164 0 0 164 0 164 0 0 164 0 0 164 0 0 0 164 0 164 0 0 0 164 

IC 9 0 0 09 0 0 9 0 0 9 9 0 0 0 0 9 9 0 0 0 0 9 
RP 10 0 10 0 0 10 0 0 10 0 0 10 0 0 10 0 0 10 0 0 10 0 

jEdit 

AP 34 0 34 0 0 34 0 0 34 0 0 34 0 0 34 0 0 34 0 0 34 0 

EF 104 104 0 0 73 31 0 73 31 0 0 104 0 104 0 0 0 20 84 104 0 0 
EC 77 77 0 0 77 0 0 77 0 0 0 0 77 77 0 0 0 0 77 77 0 0 

HM 230 0 0 230 0 230 0 0 230 0 0 230 0 0 0 230 0 230 0 0 0 230 

IC 40 0 2 38 0 0 40 0 0 40 0 40 0 0 0 40 40 0 0 10 0 30 
RP 14 0 14 0 0 14 0 0 14 0 0 14 0 0 14 0 0 14 0 0 14 0 

 

7. PREVIOUS STUDIES 

There are several problems that appear while using code refactoring tools, such as slow performance, 

unclear messages displayed by the tools when an error occurs. This leads to programmers being slow and 

hesitant to use these tools efficiently. Researchers Hill and Black suggested using three new tools that were 

developed to improve the code refactoring process, which are Selection Assist, Box View, and Refactoring 

Annotations. The results showed that these tools helped improve the programmers' experience during code 

restructuring, as they increased the speed of performance in the code restructuring process, and reduced the 

percentage of errors that occur during the process. Some metrics used to measure the performance quality of 

the three tools: Total correctly identified phrases: 355, Total incorrectly identified phrases: 6, Average selection 

time: 5.5 seconds These values represent the quality of the Selection Assist tool, Total correctly identified 

phrases: 357, Total incorrectly identified phrases: 2, Average selection time: 7.8 seconds These values 

represent the quality of the Box View tool, For the Refactoring Annotations tool, Average time to identify all 

violated preconditions: 46 seconds, Missed violations: 1 [36]. 

 When there are long and complex codes present in programming projects, and they include multiple parts 

that are not logically connected to each other, this will lead to interference between modules and reduce the 

coherence of the code. Researchers Tsantalis and Chatzigeorgiou proposed using a refactoring approach called 

“method extraction refactoring opportunities” to solve the problem. This methodology aims to refactor the code 

through two methods. The first method deals with variables whose values are changed by assignment 

instructions within the original method. The second method focuses on object references whose state is affected 

by method calls within the original method. Experiments have shown that using the proposed approach has led 

to a significant improvement in code coherence. Some metrics to measure the performance of the proposed 

approach. Precision, recall and coherence metrics were used [37]. 

To see how refactoring affects code quality, Bavota et al. used the Ref-Finder tool to detect refactorings 

in 63 versions of three open source Java software systems (Apache Ant, Xerces-J, ArgoUML). Using Ref-

Finder, they detected 15,008 refactorings, which were manually checked and found that 12,922 of them were 

correct. They then applied the SZZ algorithm to determine whether these refactorings resulted in bugs. The 

results showed that 15% of the detected refactorings were associated with subsequent bug fixes. The Precision 

metric was used to measure the quality of the Ref-Finder tool, which was 79%, and the Recall metric was also 

used to measure the quality of the tool, which was 95% [38]. 

Over time, the system structure deteriorates and its quality decreases, a phenomenon known as software 

decay. To address this problem, researchers El-Boussaidi and Ghannem presented an approach that aims to 

identify appropriate sequences of refactorings. An interactive genetic algorithm (IGA) was adapted, which 

aims to improve the quality of the software model design through an evolutionary process that combines the 
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knowledge gained from previous refactoring examples and the feedback provided by designers during the 

optimization process. This algorithm contributed significantly to reducing the number of useless refactorings 

in optimal solutions. The measure used to measure the quality of the algorithm is the Fitness Function. In 

addition, the Precision and Recall measures were used. The percentage for the Precision measure was about 

90%, while the Recall measure was 88% [39].  

During software development, systems will undergo modifications that may complicate the source code, 

leading to a decrease in quality, especially in class cohesion and increased coupling between them. Therefore, 

researchers Bavota et al. proposed an automated method for class refactoring using the Extract Class 

Refactoring technique. This method is based on analyzing the relationships between functions within a class, 

and the goal is to identify closely related function chains. Based on these chains, new classes are created that 

have higher cohesion and maintain the coupling ratio. The LCOM (Lack of Cohesion in Methods) metric was 

used to measure the quality of structural cohesion, while the C3 metric was used to measure semantic cohesion 

[40]. 

Since software maintenance is the most expensive phase in the software development life cycle, due to 

frequent modifications, the code quality deteriorates. Malhotra and Chugh proposed a set of refactoring 

techniques including (conditional expression unification, field encapsulation, extraction method, class 

extraction, and hiding method). The techniques were applied to five different software systems, which provided 

a complete view of the impact of refactoring. It was found that refactoring significantly improves the quality 

of software and improves its maintainability. The quality of these techniques was measured using internal and 

external metrics. The internal metrics used are WMC, DIT, NOC, CBO, RFC, and LCOM. While the internal 

metrics used are understandability, abstraction level,modifiability, extensibility, and reusability [41].  

Improving software quality requires continuous changes, and the challenge is to make these changes 

automatically while maintaining code quality. To solve this problem, researchers Mohan and Greer introduced 

MultiRefactor, a tool that improves quality by automating code refactoring. The tool uses search-based 

optimization techniques, including multi-objective genetic algorithms and single-objective algorithms, to guide 

optimization processes. The tool refactors Java projects using these algorithms while ensuring that the code is 

correct. MultiRefactor also has the ability to handle multi-objective optimization processes to speed up 

maintenance. Some metrics for assessing software quality after refactoring include coherence between methods 

and visibility ratio [42]. 

The problem revolves around the inflexibility of current networks, especially LTE (Long Term Evolution) 

networks, which are designed to provide specific services to mobile operators. These networks rely on 

dedicated implementation devices for specific individual functions. The negative consequences are signaling 

storms that occur when unnecessary signals are exchanged within the network due to frequent or intensive use 

of some applications. Pozza et al. proposed Network Functions Restructuring. which involves an approach to 

segment network functions in LTE networks into smaller, more specialized units that can interact with each 

other flexibly. This is achieved by using technologies such as Software-Defined Networking (SDN), where the 

control and management layers are separated from the data plane and control plane. This technology aims to 

reduce the load on the network and enhance its performance, reducing "signaling storms" that may cause 

performance degradation. The number of signals exchanged between network functions has been used as a 

measure of the quality of Network Functions Restructuring [43]. 

The problem revolves around the difficulty of accessing websites for people with disabilities. There are 

Web Content Guidelines (WCAG) that aim to enhance accessibility, but most websites do not apply these 

standards effectively. Because correcting codes to make websites comply with these standards takes a lot of 

time and effort. Researchers Ikhsan and Candra introduced the Automated Refactoring technique, which is a 

process that automatically corrects codes to enhance accessibility according to WCAG standards. To achieve 

this, a tool called Automatica11y was developed that detects problems in codes and automatically applies 

techniques from WCAG to fix them. The results showed that applying the Automatica11y tool proved effective 

by reducing the number of errors in codes faster than the manual correction process. This led to improving the 

experience of users with disabilities in interacting with these websites. The tool was evaluated by comparing 

the number of errors and warnings before and after using the tool [44]. 

To enhance the performance of using the Java Streams API, Java 8 Streams allows operations on data to 

be performed in MapReduce mode, making it easier to write parallel programs. However, effective use of this 

API requires careful considerations such as determining when operations should be performed in parallel, and 

when these operations might be less efficient when performed in parallel. To solve the problem, 

Khatchadourian and others proposed an open source tool called OPTIMIZE STREAMS, which automatically 

reworks Java 8 streams to make them more efficient. The tool is based on a new analysis called ordering and 

type case analysis, which helps improve stream performance by determining when data order in expressions 

should be maintained. Type case analysis is used to safely improve stream performance when running in 
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parallel or serially. The tool has helped developers significantly improve their code. The Speedup metric was 

used to measure the tool's performance. An average speedup of 1.55 was recorded, meaning that programs 

became 55% faster on average after implementing OPTIMIZE STREAM [45]. 

Mobile applications, especially those running on Android. The problem revolves around the fact that 

applications consume a lot of battery power due to energy-inefficient development practices by developers. To 

solve this problem, researchers Cruz and Abreu proposed applying automatic refactoring strategies to improve 

the energy efficiency of applications. A tool called Leafactor was developed that automatically refactors the 

application code to reduce energy-inefficient codes (energy code smells) that developers usually ignore. The 

results showed that using the automatic refactoring tool significantly helped in improving the energy 

consumption of applications. The energy efficiency optimization metric and lint priority were used to measure 

the performance of the proposed approach [46]. 

 The main problem is how to improve the flexibility and maintainability of high-quality software 

automatically by identifying code smells and refactoring them without the need for manual intervention from 

developers. To solve the problem, Nassagh et al. proposed an approach based on Fuzzy Genetic Algorithm 

(FGA) using a graph model to automatically find and refactor code smells. The code is represented as a graph 

model. The algorithm applies a fuzzy rule generated by using genetic algorithmes to identify code smells and 

apply refactoring. The results showed the effectiveness of this approach compared to other traditional methods. 

Some quality metrics were used to measure the effectiveness of the method. The most prominent of these 

metrics include: betweenness centrality, load centrality, and closeness centrality [47].  

The difficulty in maintaining object-oriented software is the accumulation of "bad smells" in the source 

code, which leads to deeper design problems and increased costs. To solve the problem, researchers Tarwani 

and Shog proposed using refactoring techniques to remove bad smells from the source code. The most effective 

hill climbing algorithm was used to determine the optimal sequence of refactoring techniques. The proposed 

algorithm enables maintenance teams to improve software quality effectively and in less time, making it an 

important and effective tool in software maintenance. To measure the performance of the proposed method, 

the following were used: the simple hill climbing algorithm, the most difficult hill climbing algorithm, and the 

random hill climbing algorithm [48]. 

The difficulty in using the Extract Method tool correctly is due to the poor choice of code by the 

developers. The Extract Method faces significant usability issues. Researchers found that this tool has a failure 

rate of up to 49% when developers try to use it. Therefore, Alcocer et al. proposed designing a new tool called 

TOAD (Tool for Alternative Refactoring Design). TOAD aims to improve the success rate of applying the 

Extract Method refactoring by suggesting alternative choices for the chosen code. The tool presents five 

alternative choices to the user’s original choice, making it easier to find the correct part of the code that can be 

successfully refactored. This tool has proven to be effective in improving the success rate when using the 

Extract Method. The Success Rate metric was used to measure the quality of the tool [49]. 

The problem revolves around improving software models using multi-objective optimization techniques. 

These models face problems in improving non-functional aspects such as performance and reliability, which 

typically require significant time and resources. Researchers Pompeo and Tucci used a technique which is the 

application of multi-objective genetic algorithms such as NSGA-II, SPEA2, and PESA2 to perform 

optimizations on software models under a specific time constraint known as the search budget. These 

algorithms automatically generate design alternatives and evaluate them based on a set of indicators such as 

performance and reliability. The results showed that reducing the search budget significantly reduces the 

quality of the generated solutions. It was also shown that the type of algorithm used plays a crucial role in the 

quality of the results. Hypervolume (HV) is a good measure for evaluating the performance of algorithms in 

multi-objective optimization [50].   

Optimizing business processes designed using BPMN (Business Process Modeling) language. Optimizing 

these processes has become a strategic issue for companies in order to reduce costs and increase efficiency. 

The main problem is that manual process optimization is complex due to the factors that must be taken into 

account such as execution times and resources used. Process optimization also requires a high degree of 

expertise. Researchers Duran and Sallon proposed a technique based on process reengineering or what is known 

as "automated reengineering". This is done by reorganizing tasks and taking into account the resources used 

by these tasks. The goal is to increase the parallelism between tasks so that the total execution time is reduced. 

These steps are performed automatically using a tool developed for this purpose. The proposed technique has 

been applied to several examples and tangible results have been achieved in improving efficiency and reducing 

execution time. The metric used to measure the quality of (automated reengineering) is the average execution 

time (AET) [51].  

When software quality is optimized for performance and reliability, improving these attributes can 

negatively affect other attributes. The challenge is to determine the equivalence between these attributes. To 
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solve the problem, researchers Cortellessaa et al. proposed a genetic algorithm called NSGA-II (Non-

Dominated Genetic Sorting Algorithm II) to analyze the optimum and generate Pareto optimal frontiers for 

software models after refactoring. The technique is based on the use of UML models augmented with MARTE 

and DAM profiles that contain performance and reliability characteristics. The results showed that multi-

objective optimization techniques are effective in balancing performance and reliability in software models, 

while maintaining the quality of the resulting solutions. The metrics used to measure the quality of NSGA-II 

include: performance quality index (perfQ), reliability, performance anti-patterns, and architectural distance. 

These metrics were used to evaluate the solutions generated using NSGA-II [52]. 

 

Table 3. Shows A Summary Of Previous Studies of Refactoring. 
Author Methodology Result 

 

Hill and Black 

[2008] 

Selection Assist, Box 

View, Refactoring 

Annotations 

Selection Assist reduced the average selection time from 10.2 

seconds to 5.5 seconds, and Box View reduced the selection time 

to 7.8 seconds. Error rate is lower with Refactoring Annotations. 
 

Tsantalis and 

Chatzigeorgiou 

[2011] 
 

Extract Method 

refactoring opportunities 

Improve maintainability, Improve internal code consistency, 

Reduce code duplication. 

Bavota, et al. 

[2012] 

 

Ref-Finder 

The result of applying the Ref-Finder tool is to identify 

refactoring operations in software system, some of which were 

found to contribute to correcting errors, such as "pull method" and 

"subclass extraction", by up to 40%. While the percentage of 

errors resulting from refactoring was generally low (15%). 
 

Ghannem and El-

Boussaidi [2013] 

(Interactive Genetic 

Algorithm - IGA) 

The results showed that the precision and recall were about 88% 

on average, demonstrating that the proposed approach generates 

refactoring sequences that often match those actually applied. 
 

Bavota, et al. 

[2013] 

 

Extract Class Refactoring 

It greatly increases the coherence of extracted classes without 

significantly increasing coherence. 

It is useful for engineers who refactor code. 

It is able to approximate solutions implemented manually by 

developers by up to 91% on average. 
 

Chug and Malhotra 

[2016] 

Consolidate Conditional 

Expressions, 

,Encapsulate Fields 

, Extract Methods Extract 

Classes, 

Hide Methods 

CCE: Increases maintainability in terms of internal and external 

attributes of quality . 

EF: Reduces maintainability but makes the class safer by 

converting public members to private. 

EM: Makes classes more clear and organized, increasing 

maintainability . 

EC: Reduces code quality and maintainability due to high 

coupling between classes, but improves reusability . 

HM: Does not change internal attributes of quality but slightly 

improves external attributes, which enhances maintainability . 
 

Mohan and Greer 

[2017] 
MultiRefactor 

Single-objective search techniques: gave better results when only 

one metric was optimized. 

Multi-objective search techniques: gave generally good results 

while saving time.Multi-objective optimizations took 71% less 

time than applying all single-objective search techniques 

combined. 
 

Pozza et al. [2017] 

(Refactoring Network 

Functions) with 

(Software-Defined 

Networking - SDN). 

As a result of applying this technology, correct network 

restructuring can significantly reduce the number of signals 

exchanged between different units in the network, thus reducing 

the load on the network and improving performance. 
 

Ikhsan and Candra 

[2018] 
Automatica11y 

Error               Warning 

Ref-1 (15)       Ref-1 (9) 

Ref-2 (5)         Ref-2 (9) 
 

Khatchadourian et 

al. [2018] 
OPTIMIZE STREAMS 

The tool was evaluated on 11 Java projects containing 

approximately 642 thousand lines of code. The results showed 

that : 

36.31 % of the nominated streams were reformattable 

,The average speedup in performance was 1.55 times. 
 

Cruz and Abreu 

[2018] 
Leafactor 

This technique proves useful in improving the power efficiency of 

mobile applications without requiring significant manual 

intervention by developers, reducing the likelihood of errors and 

increasing the efficiency of the development process. 
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Author Methodology Result 
 

Nasagh et al. 

[2020] 

 

fuzzy genetic algorithm 
The proposed approach can identify 68.92% of the defective code 

classes and refactor 77% of them successfully. 
 

Tarwani and Chug 

[2020] 

Steepest-Ascent Hill-

Climbing 

The results showed that applying the Steepest-Ascent Hill-

Climbing algorithm improved the maintainability value by 20%, 

which means a significant improvement in software quality. 

Alcocera et al. 

[2020] 

TOAD (Tool for 

Alternative refactoring 

Design) 

After conducting a comparative experiment between TOAD and a 

standard refactoring tool in the Pharo environment, the 

researchers found that TOAD was able to significantly reduce the 

number of failed refactoring attempts. 
 

Pompeo and Tucci 

[2022] 

NSGA-II, 

SPEA2, 

PESA2 

The NSGA-II algorithm was the fastest at finding solutions, while 

PESA2 was the most capable of producing high-quality solutions 

but took longer. As for the SPEA2 algorithm, it was the slowest 

and least efficient in producing high-quality solutions. 
 

Durán,and Salaün 

[2022] 
Automated Refactoring 

The results showed that the technology is able to improve 

operations by reducing the total execution time, and increasing 

efficiency by organizing tasks in a way that ensures the use of 

available resources. 
 

Cortellessaa et al. 

[2023] 

NSGA-II (Non-dominated 

Sorting Genetic 

Algorithm II) 

Results showed up to 42% improvement in performance while 

maintaining or improving reliability by up to 32%. 

 

8.  CONCLUSION 

Refactoring is important in improving software quality and facilitating its maintenance, and it is a 

common practice due to the evolution of technology and the need for software with multiple and changing 

requirements over time. This study focused on how to implement and use refactoring that enhances its internal 

structure, while maintaining external performance, which leads to reducing technical debt and improving 

performance. It also discussed multiple approaches and methods for refactoring, such as those based on metrics 

and rules, in addition to the use of search and machine learning techniques in improving software design as 

well as the tools and techniques used in the refactoring process, and the challenges associated with it, and 

showed the role played by machine learning and deep learning in discovering optimal refactoring opportunities, 

for example, tools such as RefactoringMiner and CODEBERT have shown a significant role in enhancing the 

accuracy of refactoring prediction. It also discussed the importance and role of code reviews in improving its 

accuracy and knowledge sharing among team members. Some of the results of previous studies were presented, 

showing that techniques such as NSGA-II and tools such as OPTIMIZE STREAMS lead to performance 

enhancement while reducing structural complexity, which illustrates the impact of refactoring on software 

quality and maintainability. The results provide practical insights for developers, as automatic refactoring 

techniques can reduce maintenance effort. However, the ethical impact of these tools should be considered, 

such as verifying the accuracy of the refactored code and its impact on software functionality. 
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