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 This paper focuses on enhancing wireless sensor networks (WSNs) for 

monitoring water quality in aquaculture, specifically shrimp ponds, by 

improving pathloss (PL) models. Radio wave propagation in such 

environments is challenging due to unpredictable signal attenuation caused 

by factors like distance, antenna height, terrain, vegetation, and weather 

conditions. Reliable PL modeling is essential for optimizing network 

performance. The research evaluates the performance of theoretical PL 

models, including ITU, Fitting-ITU (FITU), and Weissberger, by comparing 

their predictions with actual 2.4GHz radio frequency (RF) measurements. 

Statistical metrics such as root-mean-square error (RMSE) and the coefficient 

of determination (R²) were used to assess model accuracy. Initial results 

showed significant discrepancies, with an average RMSE of 28.7dB and an 

R² of only 5%. To address these issues, the study employed modification 

techniques (quadratic and cubic polynomial adjustments) and optimization 

methods, particularly particle swarm optimization (PSO). These approaches 

refined the theoretical models, aligning them more closely with real-world 

data. The optimized PSO model reduced the RMSE to 8.34dB and further to 

1.89dB, while improving R² from 5% to 95.6%, demonstrating a near-perfect 

fit. This study highlights the critical role of PSO and similar techniques in 

bridging the gap between theoretical predictions and practical applications, 

ensuring more reliable WSN performance in aquaculture environments. The 

findings contribute to the development of robust, high-accuracy models 

tailored to the unique challenges of aquaculture settings. 
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1. INTRODUCTION  

According to the FAO, the fisheries sector, particularly shrimp farming, has shown a steady upward trend 

since 1961, with shrimp consumption growing at an average rate of 3.0%, surpassing the population growth 

rate of approximately 1.6% [1], [2]. Additionally, a BPS report indicates that shrimp catches reached 19,341 

tons in 2023 [3], while shrimp farming in the province is projected to produce 9,240 tons by 2024 [4]. This 

growing demand for shrimp highlights the urgent need for strategies and initiatives to enhance and accelerate 

shrimp farming production to meet market needs. 

The growing demand for shrimp fishery products has not been matched by the production capacity and 

efficiency of the fisheries industry. This shortfall arises primarily from the reliance on human operators who 

manually monitor various aquaculture environmental variables. To address this issue, adopting smart fisheries 

equipped with wireless sensor network (WSN) applications offers a viable solution. WSN technology is widely 

utilized for monitoring and early detection in diverse areas such as forest fires, agricultural lands, hillsides, 
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industrial processes, and flood detection [5]. When integrated with IoT (WSN-IoT) [6], [7], it can be further 

combined with control systems [8] for applications such as a monitor for air pollution in smart city applications 

[9], [10], [11], as guiding the hajj process [12], assisting military training [13], protecting agricultural products 

from wildlife threats [14], [15], and supporting industrial monitoring [16], [17], [18], [19]. In shrimp farming, 

WSN systems serve not only to monitor water parameters like temperature, humidity, and acidity but also to 

track surrounding environmental conditions. This dual function helps safeguard the ecosystem and mitigate 

climate change impacts. Given the increasing limitations on available land and infrastructure, implementing 

WSN in shrimp farming has become essential for improving efficiency and ensuring sustainability. 

The WSN system relies on a wireless network where maintaining network connectivity is a crucial 

requirement for its continuous operation. This connectivity is directly influenced by factors such as signal 

strength, interference, and attenuation. One of the major challenges is the instability and unpredictability of the 

received signal strength, which affects the network's connectivity. Several factors contribute to this issue, 

including pathloss (PL) caused by phenomena like reflection, refraction, absorption, and signal scattering. In 

light of these challenges, this paper examines PL in radio wave propagation, specifically focusing on WSN 

applications in shrimp ponds. Key factors affecting PL include mangrove vegetation, foliage, the refractive 

index of brackish water, and the characteristics of the surrounding terrain. Understanding propagation 

characteristics and their management with accuracy and precision is critical for successfully transmitting and 

receiving aquaculture data, such as for remote sensing applications. Consequently, an in-depth exploration of 

studies like [17], which focus on PL in pond environments, becomes essential. Various studies have examined 

PL across different fields. For instance, [20] measured signal strength to determine PL in agricultural settings 

with crops like corn, rice, and peanuts; [21] analyzed PL variations based on different stages of corn growth; 

and [22] conducted PL calculations in fruit farming. These studies utilized different empirical models: [20] 

employed ITU-vegetation, Weissberger, and COST-235 models for a 2.4GHz WSN system; [21] applied the 

log-normal distribution method; and [22] incorporated rain attenuation in PL calculations. These findings 

highlight the importance of investigating radio wave propagation in WSN systems tailored to pond fisheries. 

Given the unique environmental and vegetation characteristics of such areas, developing a generalized PL 

model applicable to all pond environments is a critical goal. 

This paper presents an evaluation and analysis of the propagation of 2.4GHz WSN radio waves from 

signal strength measurements in shrimp ponds to determine and recommend appropriate PL models. This is a 

key contribution of this paper that has not been reported in previous studies. Various methods are employed to 

achieve accurate PL modeling, including polynomial modifications and heuristic optimization techniques like 

particle swarm optimization (PSO), which are used to derive statistically optimized PL parameters. A review 

of the literature reveals that both polynomial and PSO methods have been infrequently applied in PL modeling, 

particularly in the context of shrimp pond fisheries. For example, [23] utilized a cubic polynomial approach 

for modeling PL in tomato greenhouse farming, while [24] applied a similar approach for cellular 

communication systems in Oman. The PSO method, on the other hand, has been more commonly used for PL 

modeling in fields such as grassland agriculture [25], cellular communication systems [26], [27], and 

millimeter-wave communication systems [28]. This method has demonstrated its capability in enhancing 

statistical metrics like root-mean-square error (RMSE) and the coefficient of determination (R²), as noted in 

[27]. These techniques aim to produce PL models that align accurately with environmental conditions. In this 

study, various approaches are explored to refine empirical PL models, such as ITU, FITU, and Weissberger, 

while accounting for the impact of rainfall attenuation. To evaluate and analyze PL performance effectively, 

field-measured RF data are compared against theoretical predictions from models like ITU, FITU, and 

Weissberger, focusing on critical statistical parameters such as RMSE and R². This approach involves assessing 

how well the theoretical models replicate the measured PL by considering the specific environmental 

conditions, such as vegetation density, terrain type, and antenna height. For instance, the ITU model 

incorporates vegetation depth and frequency dependence, making it suitable for predicting signal attenuation 

in environments with dense mangroves or aquatic vegetation [29]. Similarly, the FITU model extends the ITU 

framework by fine-tuning the coefficients to account for localized vegetation characteristics, such as canopy 

spread and leaf structure, ensuring better accuracy in semi-dense foliage conditions [30]. The Weissberger 

model, on the other hand, is designed for dense forested areas, emphasizing the non-linear attenuation effects 

caused by thick and dry foliage [31]. By calculating the RMSE, researchers can quantify the deviation between 

measured and predicted PL, where a lower RMSE indicates a better model fit. The R² value complements this 

analysis by measuring how well the model explains the variability in the measured data. An R² value close to 

1 suggests high predictive reliability of the model. These statistical evaluations help identify the most 

appropriate PL model for a specific application, such as designing WSNs for shrimp ponds, where 

environmental factors like high rainfall and varying vegetation significantly impact signal propagation [32]. 
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This paper introduces a novel approach by evaluating and analyzing signal strength and pathloss (PL) 

while considering multiple influencing factors, including the distance between the transmitter and receiver (Tx-

Rx) of the WSN system, variations in Tx-Rx antenna height, and the conditions of the signal propagation path. 

Measurements were conducted in shrimp pond environments located in North Kalimantan, Indonesia. The 

propagation paths examined include those passing over pond water obstructed by mangrove vegetation, paths 

along pond embankments with moderately dense mangrove coverage, and paths along embankments without 

vegetation, consisting of hard clay surfaces. Additionally, the refractive index of the water surface was factored 

in, as it contributes to the occurrence of multiple signal propagation rays, as discussed in [33], [34]. This study 

also employs modified radio wave propagation modeling techniques, such as polynomial and PSO methods, 

tailored for aquaculture-WSN applications. These findings are compared to prior studies, such as [35], which 

focused on measurements in tropical regions known for their high rainfall and significant rain attenuation 

effects, as highlighted in [36].   

The structure of this paper is as follows: Section 2 outlines the methodologies applied, covering the 

research stages, materials, an overview of empirical PL models, the use of polynomial methods for PL 

modification, and the application of PSO techniques for optimization. Section 3 details the results of the study 

and includes a discussion of signal strength measurements, PL calculations, RMSE performance, and the 

performance of PL modifications and optimizations using the PSO method. Finally, Section 4 concludes the 

study with key findings and insights. 

 

2. METHODS  

This section describes and explains the process and stages related to the measurement area and data 

collection methods, descriptions of each of the empirical PL models commonly used in radio propagation with 

vegetated locations, and descriptions related to the polynomial and PSO methods as one of the optimization 

techniques for accurate system modeling in this study which is shown in Fig. 1 and explained in the next 

subsection. 

 

 
Fig. 1. Flowchart of the radio propagation modeling process 

 

2.1. Location, Configuration, and Data Collection for RF Measurements 

The selection of the measurement location was based on the significance of shrimp fisheries as a primary 

commodity in aquaculture within North Kalimantan, Indonesia. A single site was chosen to represent typical 

pond conditions for experimentation, as illustrated in Fig. 2 (marked by a red pointer on the map). This site is 

situated in Tana Tidung Regency, Sesayap Hilir District, at latitude 3.418241 and longitude 117.427562. 

According to [37], shrimp ponds in North Kalimantan primarily cultivate tiger and vaname shrimp, covering 

approximately 149,958 hectares (62%). However, production has declined by about 50–60 kg per hectare, 

attributed to factors such as land-use changes, environmental pollution, and traditional manual pond 

management practices. To address these challenges, adopting WSN technology is proposed as a potential 

solution. 

The RF signal strength at the shrimp pond site was measured as the received signal strength indicator 

(RSSI, Pr), taking into account various factors, including the conditions of the radio wave propagation paths. 

Since mangrove vegetation is present at the location, its impact on the RF measurements was also considered. 

According to [38], the average height of wild mangrove plants ranges from 1–5 meters to as high as 10–15 
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meters. Additionally, a study by [39] described these plants as having small, densely clustered, pointed leaves 

and growing in compact formations. RF signal strength measurements were conducted for each type of 

propagation path in the shrimp pond, as illustrated in Fig. 3. The pond features three distinct paths: (A) a route 

through pond water with sparse mangrove vegetation, (B) a path along pond embankments surrounded by 

moderately dense mangrove vegetation, and (C) a path along pond embankments consisting of hard clay 

surfaces. The radio wave propagation path scenarios are illustrated in Fig. 4. 

 

 
Fig. 2. Geographic coordinates of shrimp pond measurement sites 

 

 
Fig. 3. Configuration of the RF measurement area for shrimp pond environments 

 

At the shrimp pond measurement site, the setup includes a combination of Tx and Rx antennas positioned 

at specific heights above the ground, denoted as ht and hr, respectively. Two height configurations were used: 

one where the antennas were positioned below the height of the mangrove vegetation, approximately 50 cm 

from the ground, and another where they were slightly above the vegetation, at a height of around 4 meters. 

The 50 cm height was chosen to minimize signal attenuation caused by reflections from the ground surface 

along a propagation path exceeding 100 meters. In contrast, the 4-meter height was achieved by mounting the 

antennas on poles to ensure Line-of-Sight (LoS) conditions between the Tx and Rx, as noted in [17], despite 

differences in vegetation types and pond dimensions. While mango and coconut trees were reported as 

vegetation in other ponds measuring about 27 m × 69 m, the measurement area in this study was approximately 

120 m × 280 m. At the site, the Rx position was kept stationary, while the Tx location was adjusted 

http://issn.lipi.go.id/issn.cgi?daftar&1368096553&1&&
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incrementally up to 20 meters along the pond’s length. This adjustment was necessary since data processing 

was carried out on a Personal Computer (PC) connected to the Rx, making it important to maintain the Rx in 

a fixed position, as depicted in Fig. 5. In the wireless sensor network (WSN) configuration, the Tx served as a 

sensor node, while the Rx functioned as the sink node. 

 

 
Fig. 4. Various scenarios of radio wave propagation paths in shrimp ponds 

 

 
Fig. 5. Setup of RF measurement system in the shrimp pond environment 

 

Fig. 5 illustrates the process of collecting signal strength data (in dBm) for the RSSI signals received by 

the Rx antenna. The RSSI values are derived from the measurement of 2.4GHz RF signals at the Rx using a 

spectrum signal analyzer (SSA), with the transmitter being a vector signal analyzer (VNA). Both the 

transmitting and receiving antennas are omnidirectional, featuring a gain of approximately 0 dBi (𝐺𝑡  and 𝐺𝑟), 

and the transmit power is set at 10 dBm (roughly 0.01 watts). A PC is employed to calculate and simulate both 

the measured PL and the PL predicted by empirical models. Table 1 provides a detailed summary of the RF 

measurement system parameters, including transmission power, operating frequency, antenna gain, and other 

relevant settings. 

From the measurement data of signal strength (𝑃𝑟), transmit power (𝑃𝑡), and antenna gain, both can be 

calculated as 𝑃𝐿𝑚  using the formula 

 𝑃𝐿𝑚 = 𝑃𝑡 + 𝐺𝑡 + 𝐺𝑟 − 𝑃𝑟  (1) 

where 𝑃𝑡, 𝑃𝑟 , 𝐺𝑡, and 𝐺𝑟  are expressed in dBm, dBm, dBi, and dBi units, respectively. 
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Table 1. Configuration of Parameters for RF Measurements 
Parameter Value 

Frequency, 𝑓 2.4 GHz 

Transmit power, 𝑃𝑟  10 dBm 

Antenna type Omnidirectional  

Antenna height, ℎ𝑇 & ℎ𝑅  0.5 & 4 M 

Tx and Rx antenna gain, GT & GR 0 dBi 

Measurement Parameter, PR RSSI dBm 

 

The computation of PL in (1) incorporates several factors, including the height of the Tx-Rx antennas, 

the distance between them, the characteristics of the propagation path, and the surrounding vegetation. As 

highlighted by [36], North Kalimantan, Indonesia, experiences substantial rainfall, which significantly affects 

the propagation of high-frequency radio waves. Additionally, being located in the equatorial region with a 

tropical climate, the area experiences rain attenuation that further contributes to an increase in PL. In the 

findings reported by [22], rain attenuation was identified as a key factor in the elevated PL of the empirical 

model, which aligns with the additional attenuation effects discussed in Section 2.2 of [22]. Rain attenuation, 

measured in dB, is determined using the formula provided in [22]. 

 𝐴𝑟 = 𝑘𝑟𝛼  (2) 

In this calculation, r represents the rain rate in mm/h, while k and  are constants that depend on the 

rainfall distribution at a specific frequency. For radio wave propagation at 2.4GHz with horizontally polarized 

antennas, the constants k and  are assigned values of 0.0001321 and 1.1209, respectively, as per [22]. Using 

(2), the rain attenuation is calculated to be approximately 14.73 dB. However, based on statistical data from 

the North Kalimantan BPS in 2023 [40], which recorded a rain rate of around 243.78 mm/h at the study 

location, the rain attenuation is slightly lower at approximately 12.04 dB. After determining the measured PL 

(PLm), these results are compared with theoretical PL (PLt) derived from empirical models such as ITU, FITU-

vegetation, and Weissberger, which account for the effects of vegetation, leaves, and trees. 

After obtaining PLm and PLt, to validate them statistically, the RMSE and R2 parameters can be used as 

done by [20]. The RMSE and R2 expressions are formulated, respectively with 

 𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑃𝐿𝑡 − 𝑃𝐿𝑚)2

𝑁

𝑛=1

 (3) 

 𝑅2 =
∑ (𝑃𝐿𝑡 − 𝑃𝐿𝑚̂)

2𝑁
𝑛=1

∑ (𝑃𝐿𝑚 − 𝑃𝐿𝑚̂)
2𝑁

𝑛=1

 (4) 

In this context, 𝑛 represents the total number of measurement data points, and 𝑃𝐿𝑡̂ denotes the average 

measured PL. If the RMSE value calculated using (3) for a specific empirical PL model is the lowest, that 

model can serve as a reliable reference for predicting PL characteristics in shrimp pond environments. 

Additionally, 𝑅2, as defined in (4), determines the suitability of an empirical PL model as a reference if its 

value is close to or equal to 1. A higher 𝑅2 indicates that the empirical model’s data closely align with the 

measured PL values. 

 

2.2. Theoretical Pathloss Models 

This section outlines several empirical PL models commonly utilized to estimate the characteristics of 

radio wave propagation, such as those used in fisheries-WSN communication systems. If a model yields a low 

RMSE and an 𝑅2 value nearing one, it can be adopted as a modified PL model for predicting radio wave 

propagation in vegetative environments. To further enhance RMSE and 𝑅2 values, the PL model is refined 

through polynomial methods and optimized using the PSO technique to achieve statistically superior 

parameters. This study employs several empirical models tailored for PL, accounting for factors like trees, 

vegetation, and soil conditions, including ITU, FITU-vegetation (FITU), and Weissberger (W). These models 

have been recommended in studies such as [22], [41], which highlight the impact of surrounding vegetation on 

PL calculations. 
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2.2.1. ITU Pathloss 
This PL model (measured in dB) is utilized when the Tx and Rx are positioned near each other, with a 

sparse grouping of trees in between. In this scenario, the signal traverses the trees at a depth (𝑑) in meters, and 
the model is expressed as described in [20]. 

 𝑃𝐿𝐼𝑇𝑈 = 0.2𝑓0.3𝑑0.6 (5) 

 

2.2.2. FITU Pathloss 
This PL model, measured in dB, is applicable for environments with relatively short vegetation and a 

maximum foliage depth (𝑑) of approximately 400 meters. The model is mathematically expressed as outlined 
in [41]. 

 𝑃𝐿𝐹𝐼𝑇𝑈 = 0.39𝑓0.39𝑑0.25 (6) 

 

2.2.3. Weissberger Pathloss 

This model is used for radio wave propagation, measured in dB, at a frequency (𝑓) in GHz when the 

signal is obstructed by dense, dry, and leafy vegetation. The vegetation depth (𝑑) in meters is incorporated into 

the formulation as presented in [20]. 

 𝑃𝐿𝑊 = 1.33𝑓0.284𝑑0.588 (7) 

 

2.2.4. Polynomial and PSO Approaches for Pathloss 

The polynomial method is a type of non-linear analysis used for modeling PL measurements based on 

the distance between Tx-Rx or the vegetation depth (𝑑). The resulting curve can take a quadratic form, 

representing the second order of 𝑑, as shown in (8), or a cubic form, representing the third order of 𝑑, as 

indicated in (9) [42]. 

 𝑃𝐿𝑄 = 𝛽 + 𝛾𝑑 + 𝛿𝑑2 (8) 

 𝑃𝐿𝐶 = 𝛽 + 𝛾𝑑 + 𝛿𝑑2 + 𝜀𝑑3 (9) 

with the constants , , , and  determined through the following expressions 

 𝑛 + ∑ 𝑑𝑖 + ∑ 𝑑𝑖
2 + ∑ 𝑑𝑖

3 =  ∑ 𝑃𝐿𝑖  (10) 

 ∑ 𝑑𝑖 + ∑ 𝑑𝑖
2 + ∑ 𝑑𝑖

3 + ∑ 𝑑𝑖
4 =  ∑ 𝑑𝑖𝑃𝐿𝑖  (11) 

 ∑ 𝑑𝑖
2 + ∑ 𝑑𝑖

3 + ∑ 𝑑𝑖
4 + ∑ 𝑑𝑖

5 =  ∑ 𝑑𝑖
2𝑃𝐿𝑖  (12) 

 ∑ 𝑑𝑖
3 + ∑ 𝑑𝑖

4 + ∑ 𝑑𝑖
5 + ∑ 𝑑𝑖

6 =  ∑ 𝑑𝑖
3𝑃𝐿𝑖  (13) 

Based on research reported by [25], [43], dan [44], Particle Swarm Optimization (PSO) is a heuristic 

method used to address optimization problems. In this approach, individual elements referred to as particles 

form a swarm, and the calculation speed can be adjusted to achieve optimal results. The process of finding the 

best solution involves updating particle positions based on specific parameters, including the particle's personal 

best position (𝑝𝑏) and the global best position (𝑔𝑜). The position and velocity of each particle are denoted as 𝑝𝑖 

and 𝑣𝑖, respectively, where 𝑖 = 1, 2, ..., 𝐼. The iterative process for PSO, which updates 𝑣𝑖 and 𝑝𝑖 for each iteration 

𝑛 = 1, 2, ..., 𝑁, is defined mathematically as shown in [45]. 

 𝑣𝑖
𝑛+1 = 𝑤𝑣𝑖

𝑛 + 𝑐1𝑟1(𝑝𝑏 − 𝑝𝑖) + 𝑐2𝑟2(𝑔𝑏 − 𝑝𝑖) (14) 

with 

 𝑝𝑖
𝑛+1 = 𝑝𝑖 + 𝑣𝑖

𝑛+1 (15) 

  In this context, 𝑤 represents the inertia weight, c1 and c2 are scaling coefficients, and r1 and r2 are random 

vectors with values ranging between 0 and 1. The equations in (14) and (15) are utilized to predict path loss 

(PL) from various empirical models, ensuring that the resulting PL achieves the lowest RMSE value when 
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compared to the measured data. The algorithm of this method applied to PL optimization is listed in detail in 

Algorithm 1. 

 

Algorithm 1: Pseudocode of Path Loss Optimization Algorithm using PSO 
Input: 

I = swarm size 
N = problem dimension (positions k1, k2, ..., kn) nmax = maximum number of iterations 

c1, c2 = acceleration constants (0 ≤ c1 ≤ 2, 0 ≤ c2 ≤ 2), wmax = 0.9 (initial inertia) 

wmin = 0.3 (final inertia) 
PL(k1, k2, ..., kn) = path loss function for positions 

 

Output: 
go = best solution (position) that minimizes path loss 

 

1. Start: 
Initialize swarm randomly: 

For each particle i from 1 to I: 

Initialize particle position pi  
Initialize particle velocity vi randomly 

Initialize personal best position pbi = pi  

Evaluate path loss function: f(pi) = PL(k1, k2, ..., kn) 
Set pbi = pi jika f(pi) is the best so far  

end for 

2. Define go as the particle with the minimum fitness value. 
3. As long as n ≤ nmax do: 

Calculate inertia weight: w(n) = nmax - (nmax - nmin) * (n / nmax) for each particle i from 1 to I do: 

Update particle velocity in (14) to update particle position in (15)  
Evaluate fitness function: f(pi) = PL(k1, k2, ..., kn) 

Update personal best position: 

If f(pi) < f(pb) then pb = pi  
Update global best position:  

If f(pi) < f(pb) then go = pb  

end for 
Increase iterations: n = n + 1 

Check stopping criteria (maximum iterations reached or solution has converged). 
4. Done  
5. Return go and minimized path loss value PL(go) 

 

The empirical PL model with the smallest RMSE value is chosen for further modification and comparison 

using both the polynomial method and the PSO optimization approach. The goal is to identify which PL model 

provides the most accurate statistical parameters, making it the most appropriate and reliable for modeling 

radio wave propagation in shrimp pond fisheries. This model can then serve as a reference for designing and 

planning an effective WSN system in the area. 

 

3. RESULTS AND DISCUSSION  

 This section outlines the measured results and provides a detailed analysis through the following steps: 

(a) presenting signal strength measurements for all path scenarios in graphical form, (b) calculating based on 

the measurement results using (1) for RSSI values derived from RF measurements and the data in Table 1, (c) 

determining the PL using empirical models from (5)-(7) and polynomial models from equations (8)-(9), which 

include rain attenuation calculated using (2), and comparing them with PLm, and (d) calculating the RMSE for 

the results in step (c), where the model with the lowest RMSE is identified as a candidate for further 

optimization using the PSO method. The PL model modified through PSO, with an R² value approaching 1, is 

then recommended as the most suitable model for predicting radio wave propagation in WSN systems for 

shrimp pond fisheries at the research site and similar environments. 

 

3.1. RSSI as Signal Strength in Shrimp Ponds 

Fig. 6 illustrates the measured signal strength in shrimp ponds for the three different propagation path 

scenarios. Overall, the RSSI values decrease as the distance between the Tx and Rx antennas increases. The 

figure also highlights that in scenario B, where the Tx-Rx antenna is positioned 0.5 m above the ground, the 

receiver sensitivity has a lower threshold of approximately -85 dBm. Under these conditions, signal 

propagation remains feasible across the entire pond length of up to 280 meters. RSSI on path B is lower because 

there is mangrove vegetation that weakens the signal received by the Rx antenna from the Tx when compared 

to other paths, in line with the study reported by [17], [46], which shows that in ponds surrounded by vegetation, 

signal attenuation occurs compared to when no vegetation is present. According to the studies by [38], [39], 
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[47], and [48], mangrove plants grow in dense clusters, have thick leaves, and are more than 15 m high from 

the ground surface, which makes them a significant source of attenuation in radio wave propagation. This 

phenomenon arises because the signal emitted by the Tx sensor is largely absorbed by the vegetation, 

particularly the leaves of the trees. In path A, the measured RSSI remains relatively strong, as the mangrove 

vegetation is present but less dense compared to path B. Conversely, in path C, which traverses embankments 

with uneven clay surfaces, the transmitted signal experiences attenuation due to the effects of irregular 

reflections from the ground dispersing in multiple directions. 

 

 
Fig. 6. RSSI for variations in Tx-Rx antenna height with: (a) path passing through pond water with little 

mangrove vegetation, (b) path passing through pond embankments with fairly dense mangrove vegetation, 

and (c) path with pond embankments consisting of hard clay surfaces 

 

3.2. Pathloss Performance in Shrimp Ponds 

Based on RSSI data for all path scenarios in Fig. 6, then by using (1) and Table 1, the measurement PL 

(p.m.) can be calculated, the results of which are presented in Fig. 7. While for the empirical PL model, use (5)-

(7) and include the rain attenuation that has been calculated with (2) for the measurement location. From the 

measurement data, Quadratic PL (PLQ) and Cubic PL (PLC) can also be generated using (8)-(9) where the 

formulation of polynomial PL for both path scenarios is given in Table 2. Determining an accurate PL model 

for WSN applications in shrimp ponds should also consider the influence of weather such as rain attenuation, 

which has been done by [22] in fruit farming areas on the propagation of 2.4GHz radio waves. 

 

Table 2. PL Formulation with Quadratic and Cubic Polynomial Methods for Each Scenario in Shrimp Ponds 
Type Tx-Rx antenna height (m) Quadratic (PLQ) Cubic (PLC) 

A 
0.5 68.369 + 0.1051d - 0.00007d2 68.748 + 0.0921d + 0.00003d2 - 0.0000002d3 

4 68.36 + 0.0828d - 0.00006d2 69.662 + 0.0382d + 0.0003d2 - 0.0000008d3 

B 
0.5 68.752 + 0.1443d - 0.0002d2 67.639 + 0.1824d - 0.0005d2 + 0.0000007d3 

4 68.835 + 0.0806d - 0.00002d2 68.417 + 0.0949d - 0.0001d2 + 0.0000003d3 

C 

0.5 69.532 + 0.1248d - 0.0001d2 70.091 + 0.1056d + 0.00003d2 - 0.0000003d3 

4 68.534 + 0.1261d - 0.0001d2 
69.006 + 0.1099d - 0.000009d2 - 

0.0000003d3 

 

In general, from Figs. 7(a)-(f), it is evident that the ITU PL model (PLITU) [49] exhibits a trend that closely 

aligns with the PL of RF measurements. In contrast, the PL of other empirical models, such as FITU PL (PLFITU) 

[50] and Weissberger PL (PLW) [31], falls significantly below the measurement data. For PLQ and PLC, their 

patterns closely match PLm, as the values of both PLs are derived directly by referencing. Thus, for the next 

stage of PL calculations, modifications are performed using the RMSE method and optimization with the PSO 

method, leading to the selection of the ITU PL model in Fig. 7. This selection is justified by determining the 

RMSE value of the three empirical PLs (PLe) against PLm and then choosing the PL with the smallest RMSE 

value, as demonstrated in studies such as [26].  
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(a)                                                      (b)                                                         (c ) 

 
(d)                                                      (e)                                                         (f)  

Fig. 7. PL on RF measurements and empirical models for scenarios: (a). A with Tx-Rx antenna height of 

0.5m, (b). A with Tx-Rx antenna height of 4m, (c). B with Tx-Rx antenna height of 0.5m, (d). B with Tx-Rx 

antenna height of 4m, (e). C with Tx-Rx antenna height of 0.5m, and (f) C with Tx-Rx antenna height of 4m 

 

3.3. RMSE and R2 Performances of All Pathloss 

In path loss (PL) modeling, performance serves as a key criterion for comparing measurement PL, 

modified PL proposals, and empirical model PLs. This comparison is based on identifying the PL model with 

the lowest RMSE, a method supported by prior research such as [20], [22], [26], and [35]. Table 3 summarizes 

the calculated RMSE and R² values for the PL of various empirical models, including quadratic and cubic 

polynomial PL (PLQ and PLC), in relation to the measured PL for shrimp ponds, as depicted in Fig. 7. The 

theoretical model with the smallest RMSE is deemed most suitable for estimating the measurement data [20], 

[34]. 

It can be seen from Table 3 that the ITU PL is the most suitable model to proceed to the modification and 

optimization stage for estimating data from PL measurements in the WSN system for shrimp ponds. This 

conclusion is based on the RMSE value of the ITU PL model, which is the lowest compared to other models. 

For the two polynomial PL models, PLQ and PLC, there is no need for modification and optimization as their 

RMSE values are below 6 dB, with averages of 1.21dB and 1.18dB, respectively. According to the study by 

[24] and [51], PL modification is required only if the RMSE exceeds 6 dB. This is further supported by the 𝑅2 

results for the polynomial PL models, which exceed 0.9, with averages above 0.97 (97%).  

 

Table 3. Comparison of RMSE and R2 between Measurement PL against Empirical and Polynomial PLs 

Type 
Tx-Rx antenna 

height (m) 

RMSE (dB) R2 

ITU FITU W Q C ITU FITU W Q C 

A 
0.5 28.42 40.01 36.50 1.08 1.10 0.05 0.03 0.03 0.97 0.98 

4 26.11 37.05 33.84 0.41 0.03 0.04 0.02 0.02 0.99 0.99 

B 
0.5 30.19 41.63 38.22 2.22 2.48 0.04 0.02 0.03 0.92 0.92 

4 27.14 38.47 35.08 0.60 1.68 0.04 0.03 0.03 0.99 0.99 

C 
0.5 30.97 42.79 39.20 1.17 0.89 0.05 0.03 0.03 0.98 0.98 

4 29.75 41.42 37.89 1.78 0.94 0.05 0.03 0.03 0.98 0.98 

 

Generally, the polynomial method provides the best statistical parameters to estimate the measured PL, 

as reported by [25], [52], even before the optimization process is carried out. This is also evident in Table 3, 

and based on the guidelines by [24], the ITU PL model can be modified using RMSE by adding all ITU PL 

formulations in Fig. 7 to each path scenario, along with their respective RMSE values. The modified PL 

formulation is presented in Table 4. This modification is necessary because the trend of the ITU PL model 

before modification falls below the measured PL. As shown in Table 4, after modification, the ITU PL achieves 

an RMSE reduction of 30%, with an average RMSE of approximately 8.34dB, compared to pre-modification 
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values. However, the 𝑅2 value remains below the desired threshold, approaching 0.90, with an average of about 

0.20 (20%).  

 

Table 4. Formulation of Modified ITU PL with RMSE for Each Scenario in Shrimp Pond 
Type Tx-Rx antenna height (m) Modified ITU PL RMSE (dB) R2  

A 
0.5 0.2f0.3d0.6 + 28.42 8.01 0.22 

4 0.2f0.3d0.6 + 26.11 9.44 0.14 

B 
0.5 0.2f0.3d0.6 + 30.19 8.72 0.19 

4 0.2f0.3d0.6 + 27.14 8.57 0.18 

C 
0.5 0.2f0.3d0.6 + 30.97 7.49 0.25 

4 0.2f0.3d0.6 + 29.75 7.83 0.23 

 

3.4. Performance of Pathloss with PSO 

As discussed in Section 3.3, the ITU PL model was selected for optimization using the PSO method due 

to its lowest RMSE value. This optimization approach, previously introduced in studies [25], [26], and [27], 

involves determining the coefficients of the PL model to be adjusted using the PSO algorithm as defined by 

(14)-(15). Initially, the coefficients were as shown in Table 5, and after optimization, they were updated to the 

values presented in Table 6. 

 

Table 5. Coefficients of ITU PL Model with Rain Attenuation without PSO 
ITU PL model parameters Coefficients 

1 0.2 

2 0.3 

3 0.6 

4 14.7 

 

Table 6. Coefficients, RMSE, and R2 of the ITU PL Model with PSO and Rain Attenuation in Shrimp Pond 

Type Tx-Rx antenna height (m) 
Coefficient RMSE (dB) R2 

1 2 3 Without With Without With 

A 
0.5 17.7 0.083 0.142 28.42 1.98 0.05 0.99 

4 20.1 0.069 0.128 26.11 1.73 0.04 0.92 

B 
0.5 23.1 0.060 0.129 30.19 1.96 0.04 0.97 

4 24.1 0.044 0.136 27.14 1.79 0.04 0.95 

C 
0.5 25.8 0.041 0.139 30.97 1.94 0.05 0.91 

4 25.8 0.041 0.139 29.75 1.91 0.05 0.99 

 

It can be seen in Table 6 that by applying the PSO method to the ITU PL model, there is a significant 

change in the values of its coefficients, RMSE, and 𝑅2. The results also show that by adopting this approach, 

the RMSE performance across all radio wave propagation path scenarios has drastically improved, with RMSE 

reductions of approximately 7%dB or 21.47 times and an average of 0.96. Based on this observation, the PSO 

method demonstrates exceptional capability in predicting PL, as evidenced by the significant enhancement in 

statistical parameters before and after optimization, in agreement with the findings of [53] and [54] using a 

similar approach. To provide a comprehensive comparison of all the modified and optimized PL models 

proposed in this study, including the ITU PL model, Quadratic PL, Cubic PL, RMSE-modified PL, and ITU 

PL with the PSO method, the results are summarized in Fig. 8. This figure consolidates the formulations 

presented in Table 2, Table 4, and Table 6 for clarity and evaluation.  

It can be seen in Fig. 9 by using variations in swarm size, namely 10, 20, 30, 40, and 50, then the RMSE 

versus iteration graph is obtained where the iteration size is from 1 to 100. Based on the study [55] that to 

achieve the best error value is obtained when the number of swarms increases. This can be seen from the whole 

Fig. Fig. 9(a)-(f) the best RMSE value is obtained when the swarm size approaches 50. At this swarm size, the 

RMSE value is obtained after PSO optimization as shown in Table 6. 

This study demonstrates that the PSO method is both effective and efficient in optimizing the ITU PL, 

enabling the development of several modification models applicable to various radio wave propagation 

scenarios in shrimp ponds. Beyond its established utility in cellular communication systems, the PSO method 

proves versatile, showing potential for optimizing PL in fisheries, particularly in shrimp farming. Furthermore, 

based on previous research and the findings of this study, the PSO method appears adaptable for broader 

applications in fisheries, regardless of location, provided factors such as vegetation, environmental conditions, 

weather, and suitable empirical models are taken into account. 
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(a)                                                      (b)                                                         (c)  

 
(d)                                                      (e)                                                         (f)  

Fig. 8. Comparison of PL measurements against all PL modification variants for the scenarios: (a). A with 

Tx-Rx antenna height of 0.5m, (b). A with Tx-Rx antenna height of 4m, (c). B with Tx-Rx antenna height of 

0.5m, (d). B with Tx-Rx antenna height of 4m, (e). C with Tx-Rx antenna height of 0.5m, and (f) C with Tx-

Rx antenna height of 4m 

 

    
(a)                                                      (b)                                                         (c)  

    
(d)                                                      (e)                                                         (f)  

Fig. 9. RMSE versus iterations for varying swarm sizes across scenarios: (a). A with Tx-Rx antenna height of 

0.5m, (b). A with Tx-Rx antenna height of 4m, (c). B with Tx-Rx antenna height of 0.5m, (d). B with Tx-Rx 

antenna height of 4m, (e). C with Tx-Rx antenna height of 0.5m, and (f) C with Tx-Rx antenna height of 4m 

 

4. CONCLUSION 

This paper has thoroughly detailed the calculations, evaluations, and analyses related to radio wave 

propagation, specifically focusing on signal strength and pathloss measurements in shrimp ponds for 2.4GHz 

aquaculture-WSN applications in North Kalimantan, Indonesia. Several empirical models, including ITU, 

FITU, and Weissberger (W), were assessed to identify candidate PL models optimized using the PSO method. 

Key factors influencing the selection of the appropriate PL model included the distance between the transmitter 

and receiver (Tx-Rx), the height of the Tx-Rx antenna from the ground, environmental conditions, and the 
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impact of rain attenuation. Based on RMSE calculations that accounted for rain attenuation, the ITU PL model 

demonstrated the lowest RMSE compared to other models and was further refined using the PSO method. This 

optimization yielded significant improvements in coefficients, RMSE values, and the R² parameters of the ITU 

PL model. The evaluation results show that by adopting this approach, the RMSE performance across all radio 

wave propagation path scenarios has been drastically improved, with a reduction in RMSE of about 7%dB or 

21.47 times and an average of 0.96 compared to without the approach. The higher the swarm size, the better 

the RMSE value can be achieved, where in this research the average of the scenarios created was obtained, so 

the swarm size of 50 gave the best RMSE results. Moving forward, it is anticipated that shrimp farmers can 

adopt this WSN application to enhance local shrimp farming operations, replacing traditional and manual 

monitoring methods with a more efficient and environmentally friendly approach. Future research on wave 

propagation modeling could explore additional empirical models, hybrid optimization techniques such as 

genetic algorithms or ant colony methods, and incorporate seasonal and weather variations through extended 

real-time measurements in diverse locations, ensuring practical benefits for farmers. 
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