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ABSTRACT

Lithium polymer (Li-Po) batteries are one of the most widely used batteries,
especially on everyday devices such as mobile phones and laptops. One of the
main reasons for using this type of Lithium battery is its high energy density.
In its use, this battery needs to be monitored to prevent unwanted things from
happening. A model is needed to describe the characteristics of Li-Po batteries
well in monitoring changes in the battery system. In general, the model that is
often used is the Thevenin battery model. In this study, the parameters in the
Thevenin model, such as Ro and Vc, are estimated using the RLS algorithm,
while the OCV is estimated according to the terminal voltage value during the
rest condition in the pulse test. The entire estimation process is carried out using
a low-computing device, the Raspberry Pi Zero, with the help of an INA 260
sensor to read the battery current and voltage. The battery capacity used in this
study is 5200mAh with a voltage of 11.1V. The pulse test device in this study
uses a constant current discharge and a microcontroller device for the timing
process. Before the voltage and current data are used for parameter estimation,
the data is filtered using a one-dimensional Kalman filter. The estimation results
for OCV, Ro, and Vc show quite good performance, with an MSE value of 5.42×
10−6 V and an RMSE of 0.0023 V.
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1. INTRODUCTION
One type of battery that is widely used today for various applications with high energy density values

and is lighter in weight is lithium polymer (Li-Po) [1]–[2]. This characteristic makes Li-Po batteries used in
multiple modern electronic applications requiring high-capacity energy sources with compact sizes, such as
mobile phones, laptops, and drones. In more advanced applications such as electric vehicles, Li-Po batteries
can provide longer distances with efficient energy [3]–[4]. In the Energy Storage system (ESS) application
for new renewable energy applications, this battery stores intermittent energy, whether household-based or in
industrial facilities [5]–[6]. Li-Po battery performance is affected by the chemical conditions that will perma-
nently change during use [7]–[8]. Hence, users need to know the chemical conditions of the Li-Po battery
to determine energy efficiency and battery life. If this condition is not well known, it will result in a rapid
degradation process in the battery cells and will reduce the battery’s ability to store energy. In addition, the
decline in the quality of chemicals in the battery will result in excessive heat on the surface. It can cause system
failure and other hazards such as fire. In drone applications and devices used for medical purposes, unknown
degradation values will cause sudden power loss, which is very detrimental, especially in conditions that re-
quire high reliability. Therefore, battery system users need to understand the chemical characteristics of the
battery. Chemical degradation in batteries will be very difficult to observe [9], so a model is needed to represent
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the chemical characteristics of the battery whose characteristics can represent the actual characteristics of the
battery [10]. Several researchers have used several models to understand battery characteristics, and one of
the most frequently used models is the Thevenin battery model [11], [12]. Thevenin battery model is one of
several existing battery models, and it combines electronic components such as voltage sources, resistors, and
capacitors to represent the chemical characteristics of Li-Po batteries [13]–[14]. The shape of the Thevenin
model can be seen in Fig. 1.

OCV

Ro

Rp

Cp

Vc

Vt

Fig. 1. Thevenin Equivalent Circuit of a Battery

Fig. 1 shows the structure of the Thevenin battery model, which consists of an OCV voltage source that
describes the battery voltage when the battery is not connected to the load [15], [16]. The OCV voltage has
an insignificant change compared to the voltage measured at the battery terminals, which changes significantly.
The characteristics of this OCV describe the mechanism of integration or disintegration of lithium ions in
the battery that moves from or to the electrode material [17]–[18]. The next component is a resistor called
internal resistance, labeled with Ro. This resistor describes the construction of chemicals in the battery, such
as electrolyte material as a medium for lithium ions to move, the Solid Electrolyte Interphase Layer, and
resistance to the electrode material [19], [20]. This internal resistance also causes a decrease in the measured
voltage at the battery terminals, which is a significant decrease proportional to the current flowing. Rp and
Cp, arranged in parallel, describe the transient characteristics of the battery after a voltage drop occurs due
to internal resistance and when the battery goes to the OCV voltage after the current in the battery changes
to current = 0A (disconnected from the load). Related to the chemical process in the battery, Rp describes a
resistance that occurs while moving lithium ions on the electrode surface. As for Cp, it describes the process
of forming a double layer of electrons on the electrode, which then has a capacitance value [14], [21]. The
simple structure of the Thevenin model makes it easy to use in simulations and efficient enough to be applied to
devices that have limitations on the computing side, such as the Raspberry Pi Zero W. When compared to other
models, such as the electrochemical model, which requires a complex calculation process so that it requires
a device with high computing power, it is less suitable for actual application needs when compared to the
Thevenin model. In addition, there is also a model based on neural networks or machine learning that models
battery characteristics by performing a dataset training process, which will also require high computing.

The chemical characteristics represented by the electronic components of the Thevenin model can be
determined by applying estimation algorithms such as Recursive Least Square (RLS) [22]–[23], Extended
Kalman Filter (EKF) [12], [24], Artificial Neural Networks (ANN) [25], and several other estimation methods.
RLS is the suitable algorithm for implementation in real applications with low computation because it is simpler
and only requires a few computational resources so that it can be applied to embedded devices such as Arduino,
ESP32, and Raspberry Pi Zero. For in-depth analysis purposes related to battery non-linearity, EKF is a good
alternative because the probabilistic approach in the algorithm can handle nonlinear systems. However, it
requires higher computing power compared to RLS. ANN can be used in the estimation process if there is
extensive training data and high computing devices for initial training. The ANN algorithm is very effective in
modeling very complex nonlinear relationships in batteries [26]. In the estimation process, RLS will analyze
the voltage difference between the voltage measured at the positive and negative terminals of the battery and the
voltage resulting from the estimation using the Thevenin model. Based on these differences, the RLS algorithm
will update the parameter values of the Thevenin model to minimize estimation errors. The main advantage of
RLS lies in its efficiency in updating parameters because it only uses the latest data in its algorithm without
storing or processing the entire historical dataset. However, in the application of the RLS algorithm, several
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challenges will be faced, such as estimation results that are affected by interference or noise in the input and
output data used as a reference, which affects the accuracy of the estimation. Although RLS is very effective
for linear or nearly linear systems, this algorithm could be more optimal in handling nonlinear systems.

Previous studies have tried using the Thevenin model to model Li-Po batteries, which were then estimated
using RLS and several variants. Previous research [27] tried to identify lithium battery parameters based on
changes in State of Charge (SoC) using the first-order Thévenin model. In that study, parameter identification
was carried out starting from the battery SoC condition of 100% to 10%. Other research on Thevenin param-
eter estimation [28] tried to estimate by first collecting current and voltage data. An estimation process was
carried out using the Least Square algorithm. The results obtained showed an absolute error value of 0.0052V.
The study [29] tried to estimate SoC and State of Health (SoH) from the parameter estimation results in the
Thevenin model using RLS. To obtain the SoC and SoH values, the Dual Extended Kalman Filter (DEKF)
algorithm is used based on the estimated data using RLS. The testing method applied is Hybrid Pulse Power
Characterization (HPPC) at different temperature conditions. Another study [30] tried to estimate SoC using
an Adaptive Extended Kalman Filter (AEKF). Thevenin model parameters in the study were estimated using
RLS and then entered into the AEKF equation applied to the LabVIEW application. Another RLS variant,
namely variable forgetting factor recursive least squares (VFF-RLS), is used in several studies [31], [32], [33]
to estimate Thevenin model parameters. In that research, the forgetting factor variable in the RLS algorithm is
adjusted to the needs of each parameter to be estimated. In addition to using the standard Thevenin model, sev-
eral studies also use different variations of the Thevenin model, such as in several previous studies [34]–[35],
with the hope of being able to model better battery characteristics.

The estimation of Thevenin model parameters using the RLS method in previous studies used computer
devices with very high computing capabilities; even some studies used software that required certain com-
puter specifications. Such as Matlab [36], [37]. Using devices with advanced computing capabilities will take
much work to apply to real applications such as Battery Management System (BMS) applications (Accurate
Thevenin’s circuit-based battery model parameter identification).

Using low-power computing devices to estimate parameter values in the Thevenin model using the RLS
algorithm is very important in the actual estimation process, especially in modern applications today. Low-
power devices aim to save energy on devices used in estimation, not to drain battery power significantly. Low
device production costs are also necessary if the estimation device is commercialized. In addition, the small
and portable size of the device will make it more accessible during the integration process with other supporting
devices. The need for communication between devices using various communication protocols such as I2C,
SPI, and other communication protocols is also critical, such as when the device communicates with current,
voltage, and temperature sensor devices.

This study aims to estimate the parameters of the Thevenin model on Li-Po batteries using RLS applied to
devices with low computing capabilities, namely Raspberry Pi Zero W. This approach is used as an alternative
to high computing devices that have been used to estimate the parameters of the Thevenin battery model in
real-time, using low computing devices. This study will provide new knowledge that Raspberry Pi Zero W can
be an economical solution for real-time applications such as Battery Management Systems. This study also
contributes to the real-time parameter estimation process: First, the Development of the RLS algorithm for
battery parameter estimation for low-power devices so that it can be an alternative for cost savings. Second,
this study will open up opportunities for direct application for real applications.

2. METHOD
2.1. Experimental Set-Up

The battery used in this study has a voltage specification of 11.1V , the number of battery cells is 3S,
C rate 25C to 50C, with a capacity of 5200mAh, and internal resistance in new conditions of 1 milliOhm -
5 milliOhm. The first step in the study is to charge the battery to total capacity or SOC = 100%, after which
a test is carried out using the pulse test method. Pulse test testing is carried out by drawing current from
the battery for ten seconds with a current of 0.5A with the help of a constant current discharger (CCD), then
resting (where the current flowing from the battery to the discharger is 0A) for 10 seconds as well. The timing
in drawing current for a specific time and then resting is done automatically with the help of an XIAO ESP32
microcontroller, with the configuration shown in Fig. 2.

For safety in the data collection process, several things need to be considered regarding the use of Li-Po
batteries, namely the polarity of the positive and negative voltages that must not be exchanged; if this happens,
it will damage the device connected to the battery. In addition, with a large capacity and a significant C rate,
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sparks can occur and experience extreme hot temperature conditions on the battery. As a result, the battery
will be damaged. In this study, the battery and other devices are connected with an XT60 connector designed
explicitly for battery connectors to minimize unwanted incidents.

Fig. 2. Component A is the XIAO ESP32, which is responsible for controlling the discharger with the help of
the PC817 optocoupler (Component C), whose output side is directly connected to the ON/OFF button (D2)

By default, the CCD used does not have the function to perform the pulse test process, so a simple
modification is needed as shown in Fig. 2. In the picture, the microcontroller will be set to output a voltage
on pin D7 of 5V for 10 seconds, then 0V for 10 seconds. Pin D7 is then connected to the PC817 optocoupler
with a resistor as a current adjuster that enters pin 1 of the optocoupler of 220Ω. When the optocoupler is
active (optocoupler input voltage 5V ), the Optocoupler output acts as a closed switch. When the input voltage
is 0V , it becomes an open switch. This phenomenon is then used to automatically control the CCD’s physical
ON/OFF button (in Fig. 2, the button is labeled D2).

Voltage and current measurements in this study used the INA260 sensor. This sensor can measure current
on the low and high sides, with a maximum voltage of +36V DC and a maximum current that can be measured
at 15A. This sensor was previously calibrated at the factory, so the current and voltage readings using this
sensor are excellent in this research application. However, noise in the data can affect the estimation results.
This sensor is connected to the Raspberry using the I2C protocol with a default address 0×40. Fig. 3 provides
an overview of the connection between devices in this study. In Fig. 3, the battery whose model parameters
will be estimated is connected to the CCD device via the INA260 sensor (positive cable only).

The current and voltage from the INA260 sensor are then read using the Raspberry Pi as the primary
device in data processing. To read data from the INA260 sensor using the Raspberry Pi Zero, a Python script is
written and executed on the Raspberry Pi using the Thonny IDE, which comes pre-installed with the Raspberry
Pi Zero operating system. The Raspberry Pi specifications used in this study have a CPU processing speed of
1 GHz and 512 MB RAM, with dimensions of length: 65mm and width: 30mm [38]. This device supports
several communication protocols that can be used in further developments [39], [40].

2.2. Preprocessing of Data
To handle noisy current and voltage data, the data first enters the one-dimensional Kalman filter algorithm

before entering the RLS algorithm. This Kalman Filter algorithm is formed in a Python library, which is called
in the main RLS program.

2.3. Thevenin model Equation
Thevenin battery model is formulated using equation (1). In equation (1), the model’s output is the voltage

Vt measured at the positive and negative terminals of the battery, whose value corresponds to the amount of
current flowing and is influenced by the voltage at Ro, Vc, and OCV .

Vt(k)−OCV (k) = −(I(k)×Ro)− Vc (1)
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Where Vt(k) is the voltage measured at time k (the measurement result at that time) at the battery terminal
read using the INA260 sensor, OCV k is the battery rest voltage at time k, and Ik is the battery current read
using the INA260, Ro is the internal resistance of the battery, and Vc is the polarization voltage in the parallel
circuit Rp and Cp to be estimated. In this study, only the Vc value is estimated to see the influence of Rp

and Cp arranged parallel in the Thevenin model. So, the dynamic properties of the Thevenin model due to
the influence of Rp and Cp are not included in the formulation; this makes the Thevenin equation entered into
the RLS algorithm not go through the discretization process using the Bilinear method or other discretization
methods.

I2C SCL

I2C SDA

5200mAH , 25C–50C Discharge,
3S/11.1V .

A

B

C

D

Raspberry Pi

INA260
Constan Current Discharger

Fig. 3. Battery Data Testing Scheme

2.3.1. Determining the OCV Value
It should be noted that the OCV value is the battery voltage value at a current condition of 0A, or in

the pulse test, the OCV voltage is the voltage read at rest conditions. In this study, the OCV value will be
recorded at rest conditions only, while at current conditions greater than 0A, the OCV value will be the same
as the OCV value at the previous rest condition. Algorithm 1 is a Python pseudocode for the algorithm to
determine the battery OCV value. In Algorithm 1, the voltage and current used previously have been filtered
using a one-dimensional Kalman filter, which is then stored in an OCV variable and used for the following
process. Fig. 4 shows the shape of the voltage and current during pulse test conditions, where the OCV value
is determined when the current condition = 0A.

2.4. Recursive Least Square RLS
Equation (1) is then formed into an equation that can be entered into the RLS algorithm. Because the

OCV value is determined during the rest process in the pulse test and the terminal voltage and battery current
values are obtained from the sensor, three variables in Equation (1) are known. Because the RLS equation
requires an equation arranged in a matrix format, equation (1) is formed into a form of the equation given in
Equation (3).

y(k) = Vt(k)−OCV (k) (2)

y(k) =
[
I(k) 1

] [−Ro

−Vc

]
(3)
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Fig. 4. Voltage and Current During Pulse Test Conditions

Algorithm 1 OCV Estimation During Pulse Test

1: Initialize I2C for INA260 sensor
2: Define read voltage() and read current() functions to read data via I2C
3: Initialize variables:
4: OCV = 0
5: REST THRESHOLD = 0.01
6: while True do
7: Vt ← read voltage() ▷ Read terminal voltage from INA260
8: I ← read current() ▷ Read current from INA260
9: if |I| < REST THRESHOLD then

10: Set OCV = Vt ▷ Assign the terminal voltage as OCV
11: end if
12: end while

In the RLS algorithm, the first thing to do is to identify the parameters that will be input and output. From
the equation of 3 input parameters in the form of current values represented by the vector X(k) =

[
I(k) 1

]
,

the output value is represented by y(k), and the parameters to be estimated are θ =
[
−Ro −V c

]T
. The initial

value for θ in this study is
[
−0.01 −0.01

]T
. Then, the Thevenin model equation can be written briefly in the

form of Equation (4).
y(k) = X(k) · θ (4)

Next is to get the Gain value, which will later become a determining factor related to how much influence
the new data from the INA219 sensor has on the estimation results. The equation to determine the gain value is
given in Equation (5). In this equation, there is a forgetting factor value, the value of which is in the range of 0
to 1 (0 < λ ≤ 1). The Forgetting factor value is profound in RLS to regulate how much the old data influences
the estimation process. In this study, the Lambda value (λ) is set close to 1, which is 0.9999, with the aim of
producing a stable estimation value, considering that the Ro and Vc values have properties that do not change
too much.

K(k) =
P (k − 1)X(k)

λ+X(k)TP (k − 1)X(k)
(5)

For the initial value of the covariance matrix Pk in Equation (5) is given as P (0) = 1000× Identity Matrix

with n = 2 or in its matrix form is
[
1000 0
0 1000

]
. This Covariance value will determine the confidence level
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in the initial value of the estimated parameter; the greater the value, the higher the level of uncertainty will be,
but the estimation process will be more stable, and vice versa for smaller values.

The following process in the RLS algorithm is to update the θ parameters as the estimation results and
update the covariance matrix values. The equations are given in Equations 6 and 7, respectively. Then, the
pseudocode for the RLS algorithm can be seen in Algorithm 2.

θ(k) = θ(k − 1) +K(k)
(
y(k)−X(k)T θ(k − 1)

)
(6)

P (k) =
1

λ

(
P (k − 1)−K(k)X(k)TP (k − 1)

)
(7)

Algorithm 2 RLS Algorithm for Battery Estimation

1: Initialize I2C for INA260 sensor
2: Define read current() and read voltage() functions for I2C communication
3: Initialize RLS parameters:
4: λrls = 0.99 ▷ Forgetting factor
5: P = I × 1000 ▷ Covariance matrix
6: θ = [Rinit

o , V init
c ] ▷ Initial guesses for Ro and Vc

7: OCV = open circuit voltage
8: while True do
9: Vt = read voltage() ▷ Terminal voltage from INA260

10: I = read current() ▷ Current from INA260
11: yk = Vt −OCV ▷ Error between terminal voltage and OCV
12: Xk = [I, 1] ▷ Input vector for RLS
13: Compute Kalman Gain:
14: Kk = PXk

λrls+XT
k PXk

15: Update parameter estimates:
16: θ = θ +Kk(yk −XT

k θ)
17: Update covariance matrix:
18: P = 1

λrls
(P −KkX

T
k P )

19: Rest
o = −θ[0] ▷ Estimated Ro

20: V est
c = −θ[1] ▷ Estimated Vc

21: end while

The success of the RLS estimation results on the parameters in the Thevenin model will be measured
using the Mean Squared Error (MSE) and Root Mean Squared Error (RMSE). MSE will calculate the average
error between the actual measurement value, namely the battery terminal voltage measured by INA260, and
the estimated terminal voltage value. At the same time, RMSE will show the difference between the terminal
voltage measurement value and the predicted results in voltage units. Low MSE and RSME values indicate
that the Thevenin model used can be considered close to the original characteristics of the battery.

2.5. Constraints and Further Research
Technical constraints faced in the research will be closely related to the programming process carried out

directly on the Raspberry Pi Zero. Given that this device has a deficient computing speed, it will significantly
affect the speed when opening the Thony IDE application as a place where the Python code is created. In
addition to the noise that arises from the results of sensor readings, noise is also sometimes influenced by the
condition of the cable connection between devices, which makes it very difficult to detect. The influence of the
uncontrolled research environment temperature is also an obstacle in the research because the temperature is
one of the parameters that affect battery characteristics.

For future research, it is necessary to create Python code outside the Raspberry Pi system or use other
methods to facilitate the programming process. Creating a printed circuit board (PCB) for data collection
devices must also be considered to eliminate noise in connecting devices. For the accuracy of the estimation
process.
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3. RESULT AND DISCUSSION
After carrying out the activities described in the research methodology, the next step is to analyze the

results obtained. The results obtained in this study are in the form of OCV parameter estimation results by
observing the voltage values read from the INA260 sensor at rest conditions in the pulse test and the estimated
Ro and Vc values estimated using the Raspberry Pi Zero device by applying the RLS algorithm. The data
used during the estimation process is first filtered using a one-dimensional Kalman Filter to avoid errors in
the estimation process. Fig. 5 shows the results of the battery pulse test. The graph displays the shape of the
current read by the sensor due to the pulse test, and the shape of the battery terminal voltage graph is affected
by changes in current. In addition, the graph in the figure also provides a graph of the terminal voltage of the
RLS estimation results, which are then enlarged in detail to provide a better picture in Fig. 6.
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Fig. 5. Pulse test results on a 5200mAh battery, with a current of 0.5A. The pulse test was conducted with a
discharge duration of 10 seconds and a rest duration of 10 seconds

3.1. Results of OCV Value Estimation
The OCV value obtained from the voltage value at rest can be seen in the graph given in Fig. 6. The

graph shows that the change in OCV value is insignificant (OCV in the graph is represented by a dashed green
line). Note the graph when the battery current is 0.5A where the OCV voltage does not show a voltage drop
effect that matches the nature of the OCV voltage on the battery.
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Fig. 6. The zoomed-in graph from Figure 4, which shows the estimated OCV and the estimated terminal
voltage
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The weakness of the OCV estimation when using this method lies in the timing of the pulse test. When
the discharge time (current flowing from the battery is more than 0 A, or in this study 0.5 A) lasts longer, while
the rest time is shorter, it will result in an error in estimating the OCV value. It should be noted that the longer
the discharge time, the longer the time required for the voltage to reach the actual OCV value at rest conditions.

3.2. RLS Estimation Results for Ro and Vc.
The OCV value estimated in the previous stage is then entered into the RLS algorithm to estimate Ro and

Vc. The estimation results are then given in Fig. 7. The graph shown in Fig. 7 provides an overview of the Ro

and Vc values. If seen from the results, the Ro value is within the range of the internal resistance value of the
battery (1 milli Ohm - 5 milli Ohm) in the new battery condition. The resulting Vc value shows an exponential
change that shows the dynamic nature of the battery.
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Fig. 7. RLS Estimation Results for Internal Resistance (Ro) and Polarization Voltage (Vc)

The problem experienced during the application of RLS is in selecting the forgetting factor value. In
this study, the forgetting factor value will affect both estimated values, so if the forgetting factor value is not
quite right, the stability of the estimation process on one of the estimated parameters will be affected. So, in
further research, an RLS algorithm is needed to provide different and dynamic forgetting factor values for each
parameter.

3.3. MSE and RMSE Results
The MSE value obtained in this estimation process is 5.42 × 10−6, and the RMSE is 0.0023V . The

data used as the actual data is the terminal voltage value measured by the sensor after filtration using the one-
dimensional Kalman Filter. So, if seen from the results of the MSE, it has a small value, likewise with the
RMSE value, which is also quite small.

3.4. Results of Application on Raspberry Pi Zero
As the main objective of this study is to try to estimate the parameters of the Thevenin battery model on

a device with low computing capabilities, namely the Raspberry Pi Zero, it has been successfully implemented
starting from the process of reading INA260 sensor data, filtering data to the process of estimatingOCV , Ro,
Vc parameters. However, there are still some things that need to be improved, especially in terms of direct
application to the BMS system.

Furthermore, further research is needed to apply different algorithms in estimating parameters in the
Thevenin model using the Raspberry Pi Zero, such as using other RLS variants or artificial intelligence methods.
Determination of BMS parameters such as State of Charge (SoC), State of Health (SoH), and other BMS
parameters, based on changes in the Thevenin model parameters, also needs to be studied when applied to
low-computing devices such as the Raspberry Pi Zero.
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4. CONCLUSION
This study has successfully implemented the RLS Algorithm on the Raspberry Pi Zero, which is used to

estimate the parameters Ro and Vc, although some technical challenges are faced and need to be improved. The
estimation of the value of the OCV parameter shows quite good estimation results both in resting conditions
in the pulse test. The MSE value obtained is 5.42× 10−6, and the RMSE value of 0.0023 V indicates that the
estimation error is quite small. In further research, it is necessary to conduct several further studies using other
RLS variants or using artificial intelligence in estimating the value of the Thevenin model parameters, and the
effect of environmental temperature on the estimation results of the Raspberry Pi zero device also needs to be
studied, because the characteristics of the chemicals in the battery change according to temperature conditions.
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