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1. INTRODUCTION  

Airports play a pivotal role in the global transportation network [1], facilitating the movement of millions 

of passengers and vast amounts of cargo daily [2]. Efficient management of airport traffic is essential for 

maintaining the smooth operation of the aviation industry [3], ensuring that flights are on time, resources are 

optimized, and safety is upheld [4]. However, the COVID-19 pandemic in 2020 had profoundly impacted the 

aviation sector [5]. During the peak period in mid-April 2020, there was a significant decline in passenger 

numbers, and approximately 17,000, or 64%, of the world's total passenger aircraft fleet were inactive. [6], [7]. 

Fluctuations in air traffic are common in the aviation industry [8], [9], and these variations over time make the 

data suitable for time series analysis [10], [11]. Time series data is obtained from observations made 

sequentially over time [12]. Forecasting airport traffic accurately is crucial for operational efficiency strategic 

planning and resource allocation, helping airlines, airports, and regulators make informed decisions [13]. This 

importance has become even more pronounced in recent years, as the aviation industry faces challenges such 

as changing travel patterns and increasing environmental concerns [14], underscoring the need for robust 

forecasting models [15],  [16]. Research related to Forecasting airports with time series data generally has two 
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main objectives: to understand or model the stochastic mechanisms factors within the data and to forecast 

future observations based on historical values [17], [18], [19]. 

Over the past few decades, the air transportation industry has undergone a methodological revolution in 

forecasting air traffic [20], [21]. Although academic research on this topic has emerged relatively recently, 

about three decades ago, various forecasting techniques have been diligently studied to analyze time series data 

[22], [23]. These techniques range from statistical methods to computational intelligence and even 

combinations to develop accurate models that can precisely predict and classify future events [24], [25]. 

Previous research typically falls into three main categories regarding prediction methods: flight plan-based 

algorithms, traffic flow-driven algorithms, and data-driven algorithms [26], [27]. In this context, Gated 

Recurrent Units (GRU) and Convolutional Neural Networks (CNN) have demonstrated superior performance 

in time series data prediction, making them particularly suitable for air traffic forecasting [28], [29]. CNN 

models are effective in capturing spatial dependencies within air traffic flow data, revealing underlying 

relationships [30]. Meanwhile, GRU models excel in handling the dynamic variations and addressing the 

vanishing gradient problem often encountered in recurrent neural networks, thus providing more refined and 

accurate predictions [31]. This study focuses on GRU and CNN-GRU models due to their advanced capabilities 

in overcoming the limitations of traditional forecasting methods and their potential to improve the accuracy of 

air traffic predictions. 

Several previous studies have focused on analyzing and predicting airport traffic. In the research by [32], 

the GRU model significantly reduced prediction errors at each time step, particularly in forecasting aircraft 

vertical speed, which is crucial for enhancing landing efficiency. This highlights the GRU model's strength in 

handling time series data with complex temporal dependencies. Similarly, the study by [33] emphasized the 

advantages of combining a Temporal Convolutional Network (TCN) with BiGRU to extract both spatial and 

temporal features from aircraft trajectories. This approach not only improved feature extraction but also 

reduced time complexity, demonstrating the potential for hybrid models in air traffic prediction. Meanwhile, 

[34] explored the use of a GRU model with dual attention gates to learn contextual information from Aviation 

Safety Reporting System reports. The introduction of an attention mechanism allowed the model to focus on 

critical information, thereby improving the resolution of long-term dependencies in the data. This study 

underscored the value of attention mechanisms in enhancing model interpretability and prediction accuracy. 

Another study [35], conducted experiments using the GRU model on hourly traffic data, as opposed to the 

more granular 5-minute observations, to lower processing costs. The optimized GRU model achieved a notable 

performance improvement, with a 4.5% higher average gain value compared to the standard untuned model. 

This finding suggests that model optimization can lead to significant gains in prediction accuracy, even when 

using less granular data. Conversely, the study by [36], combined Convolutional Neural Networks (CNN) and 

Gated Recurrent Units (GRU) with transfer learning to effectively capture wind speed characteristics across 

different regions. The results demonstrated the model’s ability to make accurate short-term wind speed 

forecasts, highlighting the effectiveness of combining CNNs and GRUs for complex prediction tasks. These 

studies collectively illustrate the evolving landscape of forecasting methods in the context of air traffic and 

other time-sensitive domains. By synthesizing the strengths and limitations of previous research, this study 

aims to build upon these advancements, specifically focusing on the GRU and CNN-GRU models. The choice 

of these models is informed by their proven ability to handle temporal and spatial dependencies, address long-

term dependency issues, and their adaptability to various optimization techniques, making them well-suited for 

predicting airport traffic. 

In this paper, we present our main contribution: a comparative performance analysis of the GRU and 

CNN-GRU models combined with ReduceLROnPlateau for predicting airport traffic. ReduceLROnPlateau is 

necessary because it helps to dynamically adjust the learning rate during training when the performance metric 

stops improving, thereby preventing overfitting and ensuring better convergence of the models. We explore 

the use of various optimizers, including Root Mean Square Propagation (RMSProp), Adam, Nadam, AdamW, 

Adamax, and Lion, to assess their impact on the model's predictive capabilities. We also compare the 

performance of these optimizers with their default options against those obtained through parameter tuning to 

determine the most effective configurations. This analysis focuses on time series data of airport traffic obtained 

from various regions, namely the United States, Canada, Chile, and Australia. For evaluation, Mean Absolute 

Error (MAE) and Mean Absolute Percentage Error (MAPE) are chosen because they provide clear and 

interpretable measures of prediction accuracy, with MAE offering a straightforward average error metric and 

MAPE allowing for easy comparison across different datasets by expressing errors as percentages. Through 

this evaluation, we aim to determine the effectiveness and accuracy of the best optimizer in GRU and CNN-

GRU models in predicting airport traffic, providing valuable insights for future studies in this field while also 

ensuring long-term sustainability.  
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2. METHODS  

This research involves a series of systematic stages. The process began with acquiring datasets from 

Kaggle repositories [37], followed by data preprocessing steps, including filtering, cleaning, and applying a 

MinMax Scaler. The data was then split into training (80%) and testing (20%) sets. We implemented recurrent 

layer models using GRU and CNN-GRU and explored the use of various optimizers, including Root Mean 

Square Propagation (RMSProp), Adam, Nadam, AdamW, Adamax, and Lion, to assess their impact on the 

model’s predictive capabilities, followed by parameter tuning and the application of ReduceLROnPlateau to 

dynamically adjust the learning rate. The prediction results with default optimizers were compared to those 

obtained after parameter tuning, using performance metrics such as MAE and MAPE. Additionally, we 

provided prediction graphs for GRU and CNN-GRU results compared to the actual data. The processes and 

outcomes of these stages are illustrated in Fig. 1. 

 

 
Fig. 1. Flowchart Design of Airport Traffic Prediction 

 

2.1. Data Collection and Exploration 

In this study, we used a dataset covering the period from March 16, 2020, to December 12, 2020, which 

includes data specifically from the early and mid-stages of the COVID-19 pandemic. The dataset consists of a 

single numerical attribute, "Percent of Baseline," which represents the daily percentage of airport traffic relative 

to a pre-pandemic baseline. In total, the dataset contains 7,247 data points, with each data point representing 

daily aggregated data from various airports across the USA, Canada, Chile, and Australia, as shown in Table 

1. 

 

Table 1. Airport Name and City 
Airport Name City, Country 

Boston Logan International Boston, USA 

Calgary International Calgary, Canada 

Charlotte Douglas International Charlotte, USA 
Chicago O’Hare International Chicago, USA 

Dallas/Fort Worth International Grapevine, USA 

Daniel K. Inouye International Honolulu, USA 
Denver International Denver, USA 

Detroit Metropolitan Wayne County Romulus, USA 

Edmonton International Leduc County, Canada 
Halifax International Halifax, Canada 

Hamilton International Hamilton, Canada 

Hartsfield-Jackson Atlanta International College Park, USA 
John F. Kennedy International New York, USA 

Kingsford Smith Sydney, Australia 

LaGuardia New York, USA 
Los Angeles International Los Angeles, USA 

McCarran International Paradise, USA 

Miami International Miami Springs, USA 
Montreal Mirabel Mirabel, Canada 

Montreal Trudeau Quebec, Canada 
Newark Liberty International Newark, USA 

San Francisco International South San Francisco, USA 

Santiago International Airport Santiago, Chile 
Seattle-Tacoma International SeaTac, USA 

Toronto Pearson Mississauga, Canada 

Vancouver International Richmond, Canada 
Washington Dulles International Floris, USA 

Winnipeg International Winnipeg, Canada 

http://issn.lipi.go.id/issn.cgi?daftar&1368096553&1&&
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2.2. Data Pre-Processing 

To ensure the accuracy and relevance of our analysis, we implemented several crucial preprocessing 

steps: filtering, cleaning, and normalization using the MinMaxScaler. 

We began with a filtering procedure to remove extraneous data, allowing us to focus on key parameters 

such as 'Date', 'AirportName', 'PercentOfBaseline', 'City', 'State', and 'Country'. This step is necessary because 

it eliminates irrelevant or redundant information that could introduce noise or bias into the analysis [46]. By 

narrowing down the dataset to only the essential attributes, we improve the clarity and focus of our model, 

ensuring that it processes only the most pertinent data points. 

Data cleaning is critical for addressing any inconsistencies, missing values, or errors within the dataset 

[47]. Cleaning ensures that the data is accurate, complete, and free from anomalies that could otherwise distort 

the analysis. This step improves data quality by removing or correcting any corrupt data entries, thus providing 

a solid foundation for reliable modeling and analysis. 

After filtering and cleaning, we employed the MinMaxScaler to normalize the 'PercentOfBaseline' values. 

The MinMaxScaler standardizes the data by scaling and translating each feature individually to a specified 

range, typically between 0 and 1 [48]. This normalization is crucial for maintaining inter-feature relationships, 

preventing any single feature from dominating the model due to its scale. By ensuring that all features are on 

a comparable scale, the MinMaxScaler enhances the model's ability to learn from the data effectively and 

improves the overall consistency and standardization across the dataset. This process is mathematically 

represented by (1), where the MinMaxScaler adjusts values accordingly. 

 𝑥′ =
𝑥 −𝑚𝑖𝑛(𝑥)

𝑚𝑎𝑥(𝑥) − 𝑚𝑖𝑛(𝑥)
 (1) 

 

2.3. Gated Recurrent Unit (GRU) 

In this study, we utilized the GRU model because it effectively addresses the vanishing gradient problem 

commonly found in standard RNNs by combining the cell state and hidden state [38]. GRUs are particularly 

well-suited for time series prediction due to their simplified architecture, consisting of only two gating 

mechanisms: the update gate and the reset gate. These gates are crucial for solving long-interval and long-delay 

time series prediction problems [39]. The update gate controls how much information from the previous time 

step is carried forward to the current step, ensuring that relevant data is retained over long sequences [40]. The 

reset gate, on the other hand, controls how much of the previous information is forgotten, allowing the model 

to reset its memory when necessary. This functionality is illustrated in Fig. 2. 

 

 
Fig. 2. GRU Architecture [41] 

 

In (1), the variables 𝑥𝑡 and ℎ𝑡 represent the current input and the output at step 𝑡, while 𝑟𝑡 and 𝑧𝑡 denote 

the reset and update gates. These two gates are key structures of the GRU, each being a simple neural network. 

The candidate activation for the output ℎ̃𝑡 is ℎ𝑡. Intuitively, the reset gate 𝑟𝑡 and the update gate 𝑧𝑡 measure the 

correlation between the previous state information and the prediction for the next step. 

 

𝑧𝑡 = 𝜎(𝑊𝑧 ⋅ [ℎ𝑡−1, 𝑥𝑡])

𝑟𝑡 = 𝜎(𝑊𝑟 ⋅ [ℎ𝑡−1, 𝑥𝑡])

ℎ̃𝑡 = tanh(𝑊 ⋅ [𝑟𝑡 ⋅ ℎ𝑡−1, 𝑥𝑡])

ℎ𝑡 = (1 − 𝑧𝑡) ⋅ ℎ𝑡−1 + 𝑧𝑡 ⋅ ℎ𝑡

 (2) 
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2.4. Convolutional Neural Network (CNN) 

In this study, we also employed a Convolutional Neural Network (CNN) model. A CNN is essentially a 

neural network that uses convolution operations, instead of fully connected layers, as one of its layers [42]. 

CNNs are highly successful technologies, particularly well-suited for problems where the input data has a grid-

like topology, such as time series (1-D grid) or images (2-D grid) [43]. These networks consist of an input 

layer, an output layer, and multiple hidden layers. The hidden layers typically include convolutional layers, 

pooling layers, fully connected layers, and various normalization layers, which together enable the model to 

automatically and adaptively learn spatial hierarchies of features [44], illustrated in Fig. 3. 

 

 
Fig. 3. CNN Structure [45] 

 

2.5. Train/Test Split 

In addressing the challenge posed by the imbalanced distribution of airport data across different countries, 

we adopted a methodological approach aimed at enhancing data representativeness. Specifically, we computed 

a daily average airport baseline for each country using the Pandas dataframe.groupby().mean() function. This 

function allowed us to group the dataset by country and calculate the daily mean of airport data. By integrating 

these baseline data points, we aimed to create a more balanced dataset that better reflects the overall airport 

activity within each country. 

The decision to average the data was driven by the need to mitigate the dominance of data from countries 

with a higher volume of airport records, such as the USA, which could skew the overall analysis. By averaging 

the baseline data, we ensured that each country contributed equally to the model, thereby reducing the risk of 

bias and improving the fairness of comparisons across countries. 

However, this approach has implications for model performance and generalizability. Averaging may 

smooth out extreme values and reduce variability, potentially leading to a loss of granular information that 

could be significant in some contexts. This could impact the model's ability to capture nuanced patterns within 

each country's data. On the other hand, this method enhances the generalizability of the model by preventing 

it from being overly influenced by data from a few countries with more records. 

To further validate this approach, we partitioned the dataset into an 80% training and 20% testing split, 

applying the mean function to data from the USA, Canada, Chile, and Australia, as detailed in Table 2. This 

helped in assessing the effectiveness of the method in diverse regional contexts, providing insights into its 

impact on model robustness and predictive accuracy: 

 

Table 2. Train/Test split result 
Country Train (80%) Test (20%) Total (100%) 

USA 210 52 262 
Chile 191 47 238 

Canada 210 52 262 

Australia 206 51 257 

 

2.6. Recurrent Layer Model 

This study employs two GRU layers, as detailed in Table 3. GRU Layer, which is responsible for 

capturing temporal dependenddcies in the data. The ReLU activation function is used to introduce non-

linearity. The return_sequences setting ensures that the layer outputs the full sequence of data for the next layer. 

Dropout Layer randomly drops 20% of the neurons during training to prevent overfitting and improve the 

model's generalization ability. The Dense Layer consists of a single neuron, which generates the final prediction 

output, typically representing a single value in a regression task like time series forecasting. 

In Table 4, In this CNN-GRU architecture, the layers work together to extract features and learn temporal 

dependencies from the input data. The Conv1D Layer performs convolution operations along the time axis to 

capture local patterns in the input data. It uses filters to extract features from the input sequences while 

maintaining the original sequence length due to 'same' padding. The GRU Layer processes the sequential data 

to capture temporal dependencies and patterns. It returns the full sequence of outputs, which is necessary for 

http://issn.lipi.go.id/issn.cgi?daftar&1368096553&1&&
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further processing by subsequent layers. The Dropout layer randomly drops 20% of the neurons during training 

to prevent overfitting and improve generalization. A Dense Layer with a single unit produces the final output, 

typically for tasks like time series forecasting. 

 

Table 3. GRU Parameter Model 
Parameter Value 

GRU unit 64 
GRU activation ReLu 

GRU return_sequences True 
Dropout 0.2 

GRU unit 32 

GRU activation ReLu 
GRU return_sequences False 

Dense unit 1 

 

Table 4. CNN-GRU Parameter Model 
Parameter Value 

Conv1d filters 64 
Conv1d kernel_size 3 

Conv1d strides 1 

Conv1d activation function ReLu 

Conv1d padding same 

GRU unit 64 

GRU activation ReLu 
GRU return_sequences True 

Dropout 0.2 

Conv1d filters 32 
Conv1d kernel_size 3 

Conv1d strides 1 

Conv1d activation function ReLu 
Conv1d padding same 

GRU unit 32 

GRU activation ReLu 

GRU return_sequences False 

Dense unit 1 

 

2.7. Optimizer Selection 

We chose the specific optimizers RMSProp, Adam, Nadam, AdamW, Adamax, and Lion due to their 

proven effectiveness in handling various optimization challenges. RMSProp is selected for its ability to adapt 

the learning rate based on recent gradient magnitudes, making it effective for non-stationary problems [49]. 

Adam combines the advantages of RMSProp and momentum, offering robust performance across a wide range 

of deep-learning tasks [49]. Nadam enhances Adam by incorporating Nesterov momentum, which often leads 

to faster convergence [50]. AdamW is an improved version of Adam that decouples weight decay from the 

gradient update, resulting in better generalization [51]. Adamax, a variant of Adam, uses the infinity norm and 

is well-suited for models with large parameter spaces [52]. Lastly, Lion is a newer optimizer designed to handle 

large-scale and complex datasets efficiently, offering a balance between convergence speed and computational 

efficiency [53]. These optimizers were selected to ensure a comprehensive evaluation of their impact on the 

GRU and CNN-GRU models' predictive capabilities. 

 

2.8. Performance Metric 

To measure and compare the performance of each model, we used Mean Absolute Error (MAE) and Mean 

Absolute Percentage Error (MAPE) were chosen because they provide clear and interpretable measures of 

prediction accuracy, with MAE offering a straightforward average error metric and MAPE allowing for easy 

comparison across different datasets by expressing errors as percentages [54]. Both metrics are computed using 

the following formulas: 

 𝑀𝐴𝐸 = ∑  

𝑁

𝑖=1

|𝑃𝑖 − �̂�𝑖|

𝑁
 (3) 

 𝑀𝐴𝑃𝐸 =
1

𝑁
∑  

𝑁

𝑖=1

|
𝑃𝑖 − �̂�𝑖
𝑃𝑖

| × 100 (4) 

http://issn.lipi.go.id/issn.cgi?daftar&1368096553&1&&


586 Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI) ISSN: 2338-3070 

 Vol. 10, No. 3, September 2024, pp. 580-593 

 

 

Comparative Analysis of Optimizer Effectiveness in GRU and CNN-GRU Models for Airport Traffic Prediction (Willy 

Riyadi) 

3. RESULTS AND DISCUSSION  

In this study, the choice of 60 epochs ensures sufficient training iterations for the models to converge 

without overfitting. A batch size of 32 balances computational efficiency and model performance. The 

`ReduceLROnPlateau` with `patience=3` and `factor=0.2` was chosen to dynamically reduce the learning rate 

when the validation loss stops improving, helping to fine-tune the model during training. The 

`min_delta=0.00001` ensures that only significant improvements are considered, and the ̀ min_lr=0.00000001` 

prevents the learning rate from becoming too small to make further progress. Fig. 4 provides a visual 

representation of the GRU model structure for the USA. In the CNN-GRU model, we incorporated Conv1D 

layers into the previous GRU model. Fig. 5 provides a visual representation of the CNN-GRU model structure 

for the USA. 

 

 
Fig. 4. GRU Model Structure 

 

 
Fig. 5. CNN-GRU Model Structure 

 

Table 5 provides a comprehensive summary of the performance metric scores for several countries, 

including the USA, Canada, Chile, and Australia. In our analysis, first, we utilized various optimization 

techniques, such as RMSProp, Adam, Nadam, AdamW, Adamax, and Lion on default parameters to train GRU 

http://issn.lipi.go.id/issn.cgi?daftar&1368096553&1&&
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and CNN-GRU models. These models were trained using Visual Studio Code with a Python 3 runtime. By 

comparing the scores obtained with these optimization techniques, we evaluate the effectiveness of the models 

in predicting airport baseline percentages for each country. 

 

Tabel 5. Default Optimizer Performance  
Country Model Optimizer MAE MAPE 

USA 

GRU 

RMSprop 0.0706 0.1182 

Lion 0.0700 0.1187 

Adam 0.0683 0.1163 

Nadam 0.0686 0.1165 

AdamW 0.0729 0.1201 

Adamax 0.0686 0.1168 

CNN-GRU 

RMSprop 0.0697 0.1184 

Lion 0.0655 0.1145 

Adam 0.0677 0.1163 

Nadam 0.0697 0.1184 

AdamW 0.0667 0.1152 

Adamax 0.0658 0.1141 

Australia 

GRU 

RMSprop 0.0721 0.2874 

Lion 0.0715 0.2875 

Adam 0.0722 0.2985 

Nadam 0.0727 0.2864 

AdamW 0.0721 0.2865 

Adamax 0.0715 0.2930 

CNN-GRU 

RMSprop 0.0724 0.2938 

Lion 0.0713 0.2917 

Adam 0.0702 0.2885 

Nadam 0.0708 0.2899 

AdamW 0.0711 0.2906 

Adamax 0.0723 0.2938 

Chile 

GRU 

RMSprop 0.0877 0.3514 

Lion 0.0948 0.3897 

Adam 0.0858 0.3430 

Nadam 0.0871 0.3527 

AdamW 0.0914 0.3624 

Adamax 0.0842 0.3420 

CNN-GRU 

RMSprop 0.0852 0.3380 

Lion 0.0913 0.3834 

Adam 0.0865 0.3599 

Nadam 0.0860 0.3396 

AdamW 0.0890 0.3602 

Adamax 0.0856 0.3416 

Canada 

GRU 

RMSprop 0.1097 0.1633 

Lion 0.1104 0.1643 

Adam 0.1041 0.1591 

Nadam 0.1158 0.1675 

AdamW 0.1020 0.1566 

Adamax 0.1028 0.1566 

CNN-GRU 

RMSprop 0.1124 0.1656 

Lion 0.1080 0.1632 

Adam 0.1087 0.1607 

Nadam 0.1088 0.1626 

AdamW 0.1107 0.1624 

Adamax 0.1039 0.1579 

  

In Table 6, we applied parameter tuning to various optimization techniques to enhance model 

performance. For the RMSProp optimizer, we used specific hyperparameters, including rho=0.0001, which 

controls the moving average of squared gradients, weight_decay=0.0001 to help prevent overfitting by adding 

a regularization term to the loss function, and enabled exponential moving average (EMA) with 

ema_momentum=0.0001, which influences the smoothing factor, leading to more stable training. Similarly, 

for the Adam, Nadam, AdamW, Adamax, and Lion optimizers, we set beta_1=0.0001, determining the 

exponential decay rate for the first moment estimates (i.e., the mean of gradients), and beta_2=0.0001, 

controlling the exponential decay rate for the second-moment estimates (i.e., the variance of gradients). EMA 

was also utilized with ema_momentum=0.0001, contributing to more stable training. These hyperparameters 

were selected and validated using grid search, which systematically explored different combinations to identify 
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the settings that yielded the best predictive performance for the GRU and CNN-GRU models. This iterative 

process involved testing and validating various combinations with the validation set to find the most effective 

configurations. The results from this tuning process are reflected in the model performance metrics, 

highlighting the importance of careful optimizer selection and parameter tuning in achieving optimal results. 

 

Tabel 6. Optimizer Performance with Variable Tuning  
Country Model Optimizer MAE MAPE 

USA 

GRU 

RMSprop 0.0694 0.1162 

Lion 0.0689 0.1169 

Adam 0.0663 0.1130 

Nadam 0.0670 0.1137 

AdamW 0.0710 0.1169 

Adamax 0.0672 0.1144 

CNN-GRU 

RMSprop 0.0678 0.1151 

Lion 0.0644 0.1120 

Adam 0.0661 0.1135 

Nadam 0.0682 0.1159 

AdamW 0.0650 0.1123 

Adamax 0.0646 0.1126 

Australia 

GRU 

RMSprop 0.0705 0.2811 

Lion 0.0697 0.2796 

Adam 0.0701 0.2858 

Nadam 0.0708 0.2899 

AdamW 0.0710 0.2822 

Adamax 0.0695 0.2790 

CNN-GRU 

RMSprop 0.0709 0.2876 

Lion 0.0696 0.2848 

Adam 0.0690 0.2824 

Nadam 0.0691 0.2828 

AdamW 0.0698 0.2854 

Adamax 0.0708 0.2876 

Chile 

GRU 

RMSprop 0.0862 0.3453 

Lion 0.0926 0.3805 

Adam 0.0840 0.3360 

Nadam 0.0846 0.3426 

AdamW 0.0896 0.3553 

Adamax 0.0824 0.3349 

CNN-GRU 

RMSprop 0.0831 0.3316 

Lion 0.0894 0.3755 

Adam 0.0850 0.3538 

Nadam 0.0845 0.3338 

AdamW 0.0865 0.3502 

Adamax 0.0836 0.3317 

Canada 

GRU 

RMSprop 0.1066 0.1587 

Lion 0.1084 0.1614 

Adam 0.1020 0.1558 

Nadam 0.1136 0.1643 

AdamW 0.0993 0.1525 

Adamax 0.1011 0.1539 

CNN-GRU 

RMSprop 0.1106 0.1630 

Lion 0.1061 0.1603 

Adam 0.1067 0.1577 

Nadam 0.1068 0.1596 

AdamW 0.1084 0.1590 

Adamax 0.1008 0.1532 

 

Table 6 presents a comparison of prediction performance using various optimizers for the GRU and CNN-

GRU models across several countries. The results suggest that different optimizers affect model performance 

depending on the country and model architecture. The Adam optimizer's good performance with the GRU 

model in the USA might be due to its ability to adapt learning rates effectively in diverse data. The Lion 

optimizer's success with the CNN-GRU model could be due to its enhanced convergence properties with 

complex architectures. In Australia, the Adamax optimizer's stability helped the GRU model, while the Adam 

optimizer's general adaptability benefited the CNN-GRU model. In Chile, Adamax's blend of Adam and 

infinity norm properties suited the GRU model, whereas RMSprop's adaptive learning rate worked well for the 
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CNN-GRU model. In Canada, AdamW's weight decay regularization improved the GRU model's performance, 

while the Adamax optimizer effectively balanced learning rate adjustments for the CNN-GRU model. 

To provide a visual representation of these results, Fig. 6 – Fig. 9 present the prediction outcomes of the 

best optimizers with provided parameter tuning for the GRU and CNN-GRU models in estimating the baseline 

airport percentage. The red line represents the actual baseline airport percentage data, while the blue line depicts 

the predictions generated by the GRU model with the best optimization. The green line illustrates the 

predictions made by the CNN-GRU model with the best optimization. By examining these graphical 

representations, we can evaluate the accuracy and effectiveness of the selected optimizers in predicting the 

baseline airport percentage. 

 

 
Fig. 6. Prediction Accuracy with Parameter Tuning for USA 

 

 
Fig. 7. Prediction Accuracy with Parameter Tuning for Australia 

 

 
Fig. 8. Prediction Accuracy with Parameter Tuning for Chile 
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Fig. 9. Prediction Accuracy with Parameter Tuning for Canada 

 

4. CONCLUSION 

This study highlights the critical role of selecting and fine-tuning optimizers, alongside the use of 

ReduceLROnPlateau for dynamically adjusting the learning rate, in preventing overfitting and enhancing 

model convergence. However, limitations such as dataset imbalance and region-specific outcomes may affect 

the generalizability of these findings. Prediction results using GRU and CNN-GRU models on airport baseline 

data varied significantly across different countries, primarily due to the imbalanced dataset, which spanned 

approximately 10 months and averaged 1.019 data points per country. This led to noticeable performance 

variations in the USA, Canada, Chile, and Australia. 

The optimal optimizers varied by region, emphasizing the need for careful selection. In the USA, the best 

performance for the GRU model was achieved with the Adam optimizer, resulting in an MAE of 0.0663 and a 

MAPE of 0.1130. For the CNN-GRU model, the Lion optimizer performed best with an MAE of 0.0644 and a 

MAPE of 0.1120. In Australia, the Adamax optimizer showed the best results for the GRU model, with an 

MAE of 0.0695 and a MAPE of 0.2790, while the Adam optimizer was most effective for the CNN-GRU 

model, yielding an MAE of 0.0690 and a MAPE of 0.2824. In Chile, the Adamax optimizer led to the best 

performance for the GRU model, with an MAE of 0.0824 and a MAPE of 0.3349, whereas the RMSprop 

optimizer was optimal for the CNN-GRU model, with an MAE of 0.0831 and a MAPE of 0.3316. In Canada, 

the AdamW optimizer provided the best results for the GRU model, achieving an MAE of 0.0993 and a MAPE 

of 0.1525, while the Adamax optimizer was most effective for the CNN-GRU model, with an MAE of 0.1008 

and a MAPE of 0.1532. 

These variations underscore the significant impact of dataset imbalance on prediction accuracy, 

reinforcing the need for balanced datasets in future research. Future studies should prioritize the creation of 

balanced datasets tailored to each region to mitigate the effects of data imbalance and improve prediction 

outcomes. Additionally, further investigation into optimizer parameter tuning is recommended, as it has been 

shown to significantly enhance prediction accuracy compared to default settings. 
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