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1. INTRODUCTION  

Recommendation systems play a crucial role in enhancing user experience and satisfaction across various 

platforms, particularly in streaming services like Netflix [1]. Recommender systems are computer programs 

and algorithms that analyze user habits and characteristics to propose products that are most attractive to 

consumers based on multiple criteria [2]. One of Netflix's innovative approaches involves generating 

personalized artwork for its members to help them discover content that matches their interests [3]. This process 

begins with the creation of static images from source videos, crafted into raw artwork, then ranked based on 

their aesthetics, creativity, and diversity in objects to accurately represent the content [4]. This ranking ensures 

that each member receives artwork that is not only relevant but also personalized to their specific preferences. 

The importance of genre prediction using image data becomes evident in this context, as it allows for the 

categorization of images based on their aesthetics into various genres. Movie recommender systems can 

develop genre similarity and preferred genres by using natural language processing algorithms to extract 

relevant aspects and expressions [5]. By doing so, Netflix can generate personalized feedback for members, 

aligning with their recommendations and viewing history [6]. Automatically categorizing movie posters into 

numerous genres enables efficient categorization and organizing, as well as opportunities for personalized 

recommendations, genre-focused marketing strategies, and improved user experiences in the film industry [7]. 

This recommendation system not only enhances the visual appeal but also improves the likelihood of users 

engaging with the content, thereby fostering higher satisfaction and retention rates [8]. Therefore, the study of 

information retrieval at visual data is very important for solving this problem. 
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The study of extracting picture features has received significant attention in recent years due to its 

potential to enhance numerous tasks, including image retrieval and image captioning [9]. As an emerging trend, 

deep learning methods have made significant progress in addressing this challenge [10]. While utilizing the 

visual datasets, Convolutional Neural Networks (CNNs) are widely used algorithms that have proven to be 

highly effective in analyzing images in various scenarios such as art [11], medicine [12], agriculture [13], 

transportation [14], Infrastructure [15], remote sensing [16], and biometrics [17]. CNNs have shown 

remarkable success in single-label image classification proved by various remarkable novel architecture [18]. 

The ability of CNNs to automatically learn hierarchical feature representations from raw image data has been 

a significant breakthrough, leading to state-of-the-art performance in numerous computer vision tasks [19]. 

However, the challenge amplifies in multi-label image classification due to the presence of multiple objects 

and complex relationships within a single image [20], [21]. Traditional CNNs are primarily designed for single-

label classification and may struggle with the intricacies of multi-label data [22]. The main issue lies in the fact 

that a single image may contain multiple relevant labels, requiring the model to detect and accurately classify 

each one independently while considering their interdependencies [23]. This task in nature also gives additional 

complexities such as imbalanced and noisy labels [24]. 

To address these limitations in multi-class classification tasks, several methods have been proposed to 

enhance CNNs for multi-label image classification. One approach involves using advanced pooling strategies 

like Hypotheses-CNN-Pooling (HCP), which aggregates CNN outputs from different object segment 

hypotheses to produce multi-label predictions [25]. Another approach is the use of Multi-function 

Convolutional Neural Networks (MCNNs) that apply different activation functions across various neurons, 

thereby improving classification performance by leveraging diverse activation patterns [26]. Additionally, 

optimizing loss functions to handle weakly-labeled datasets and label noise has been shown to further improve 

multi-label classification outcomes [27]. Deep multi-modal CNN (MMCNN) is also being used to decompose 

the image into a bag of instances shown to be successful even using a pre-trained single-label classification 

network [28]. Other works for this task are using various training schemes to find the methods for optimal 

combination of loss weights, mitigate overfitting by enabling early sharing of learnable features, and 

reconstruct the input accurately [29]. 

Despite several methods being proposed to enhance CNNs for multi-label image classification, such as 

advanced pooling strategies like Hypotheses-CNN-Pooling and the use of Multi-function Convolutional Neural 

Networks, there remain several limitations. This method introduces additional computational complexity and 

leads to longer training times and increased resource requirements. Implementation of model structures 

requires complex strategies and extensive experimentation to optimize their parameters effectively. This 

current approaches primarily focus on specific model structured aspects such as pooling techniques or label 

noise optimization, without fully addressing how other simple hyperparameter configurations can improve the 

performance and robustness of multi-label classification models, such as model activation function. Existing 

studies [25], [26], [27], [28], [29] often lack a comprehensive evaluation of modern activation functions and 

their potential benefits in multi-label settings, leaving a gap in understanding their impact on model 

performance. Various modern activation functions offer smoother and more expressive activation curves that 

might better capture complex patterns but have not been exhaustively compared across various CNN 

architectures. Additionally, practical implications of these functions in real-world scenarios are often neglected, 

limiting insights into their effectiveness with complex datasets. Also, there is often a lack of comparative 

analysis within the same framework, making it challenging to identify the most beneficial activation functions 

for multi-label tasks. These gaps highlight the need for a detailed investigation into how modern activation 

functions can impact multi-label classification models' performance.  

This paper introduces a new approach that incorporates modern activation functions into CNN 

architectures to enhance multi-label image classification performance. An activation function is utilized in 

CNNs to enhance the representation capability through nonlinear operations and achieve state-of-the-art 

outcomes [30]. Among the different state-of-the-art CNN architecture, ReLU (Rectified Linear Unit) is widely 

used due to its simplicity and effectiveness [31]. It activates neurons by outputting zero for negative inputs and 

passing positive inputs unchanged. However, this function has limitations as its gradient becomes zero for 

negative values, The CNN model may experience a phenomenon called "Dying ReLU" or vanishing gradient 

problem during the training process [32]. The introduction of novel activation functions has revitalized the 

scientific community's interest in neural networks, as they play a pivotal role in enhancing the expressive 

capabilities of artificial neural networks [33]. Various state-of-the-art studies for model architectures introduce 

various new activation functions that are more powerful than ReLU, such as Leaky ReLU, ELU, Swish, and 

Mish [34]. For instance, Swish as a modern activation function offers several theoretical advantages over 

ReLU, including a smoother non-linearity and better gradient flow, which can lead to improved performance 



610 Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI) ISSN: 2338-3070 

 Vol. 10, No. 3, September 2024, pp. 608-624 

 

 

A Comparative Study of Modern Activation Functions on Multi-Label CNNs to Predict Genres Based on Movie Posters 

(Ahmad Zein Al Wafi) 

and convergence. Swish addresses some of the limitations of ReLU not causing a vanishing gradient problem 

and providing a more gradual activation curve that enhances the network's ability to learn more complex 

patterns [35]. It has been shown to outperform traditional activation functions like ReLU in terms of model 

accuracy in single-label image benchmark datasets [36]. The choice between these activation functions can 

significantly impact the model's learning dynamics and overall effectiveness in image classification tasks where 

nuanced pattern recognition is crucial [37]. 

This paper aims to fill the literature gap by investigating the impact of various modern activation functions 

for solving multi-label image classification tasks in movie poster datasets. The study offers a comparative 

evaluation of several activation functions within CNN models to identify the configurations that perform best 

for multi-label movie genre classification. This will include insight to improve model performance by 

identifying which activation functions will enhance accuracy, generalization, and efficiency in multi-label 

tasks. No other hyperparameters such as loss function, optimization function, and model architecture will be 

analyzed in this study to show a clearer impact on the activation function. The novel insights will cover how 

these activation functions influence critical factors such as convergence speed and computational cost to 

provide a deeper understanding of their effects on model optimization. The findings will deliver practical 

guidance for selecting activation functions in CNN architectures, contributing valuable knowledge that could 

shape future research and applications in multi-label classification. This work contributes knowledge about the 

impact of activation functions to the existing knowledge by systematically evaluating complex problems like 

multi-label image classification, thus addressing a critical area that has not been extensively explored. 

 

2. METHODS  

2.1. Dataset 

The dataset of this work is taken from a study [9] which facilitates movie poster analysis. The movie 

poster data are obtained from the IMDB website as well as the associated metadata like movie genre. The 

dataset includes one poster for each Hollywood movie released from 1980 to 2015, resulting in a total collection 

of 8,191 poster images. The resolutions of these poster images vary from 89 × 132 to 300 × 581. The study 

collects genre information for each movie, which is evaluated across 25 different classes. The visual 

distribution of the dataset is shown in three categories, Fig. 1 shows the frequency of genre appearances per 

movie, Fig. 2 shows the distribution of all classes evaluated, and Fig. 3 shows the top 10 genre combinations 

in the dataset. The graph indicates that the dataset is unbalanced, with certain genres being overrepresented 

while others are underrepresented. 

In analyzing the genre distribution and combinations within the movie poster dataset, several insights 

emerge that could significantly impact the development and performance of multi-label CNN models. The 

genre distribution reveals a predominant presence of Drama (3619 occurrences) and Comedy (2900 

occurrences), with Action, Romance, and Crime following. This skewed distribution suggests that models 

trained on this dataset should be particularly adept at identifying these more common genres to achieve higher 

accuracy and relevance in genre classification. The frequency of genre combinations highlights that Drama and 

Comedy are the most frequently co-occurring genres, with combinations such as "Comedy, Drama" and 

"Comedy, Drama, Romance" being prominent. This expects that multi-label CNN models should be equipped 

to handle common genre pairs and triples effectively.  

 

 
Fig. 1. Total genre in the movie frequency distribution 
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Fig. 2. Genre distribution 

 

 
Fig. 3. Top 10 genres in one movie 

 

2.2. Research Design 

The research design for this study comprised several key stages to systematically investigate the 

comparative performance of different activation functions on multilabel CNNs. The flow of the research is 

illustrated in the block diagram of Fig. 4. 

 

 
Fig. 4. Research flow 

 

Initially, the dataset was obtained and subjected to a preprocessing phase to prepare it for model training. 

Afterward, a CNN model was constructed and trained using eight different activation functions. During the 

training, the data was continuously acquired to monitor performance metrics. The collected data was then 

analyzed to assess and compare the impact of each activation function based on the loss, accuracy, speed of 

convergence, best performance, and overall training time. This structured approach enabled a comprehensive 

comparison of the activation functions to identify which most effective and efficient one. 

 

2.3. Data Preprocessing 

Several preprocessing steps were attempted to ensure consistency and compatibility with CNN 

architectures. The movie poster images, originally varying in resolution from 89 × 132 to 300 × 581 pixels, 

were resized to a uniform dimension of 224 × 298 pixels. This resizing step was essential to standardize the 
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input size for the CNN models, facilitating effective training and evaluation across different architectures. 

Normalization was applied to the dataset to standardize the pixel values and aid the network in learning patterns 

more efficiently. This step helps in maintaining numerical stability during training and improves convergence 

rates by ensuring that the input data has consistent statistical properties. 

The decision was made to exclude data augmentation in this study. While data augmentation is a widely 

used technique to enhance model generalization by artificially increasing the diversity of the training dataset, 

it was excluded to evaluate the raw performance of the models and activation functions without any artificial 

modifications. By avoiding augmentation, the study aims to assess the models' capabilities to handle unaltered, 

real-world data. This approach is crucial for understanding baseline performance and limitations, providing 

insights into how well the models and activation functions perform with the original data distribution. 

The potential impact of excluding data augmentation on the study's results includes the possibility of 

reduced model generalization, as augmentation typically helps in improving robustness and adaptability to 

varied conditions. However, the focus on unaltered data allows for a clearer evaluation of the intrinsic strengths 

and weaknesses of the activation functions to ensure that performance metrics reflect the true capabilities of 

the models in handling real-world data scenarios. This understanding is essential for applications such as 

personalized artwork generation in recommendation systems, where real-world data performance is critical. 

 

2.4. CNN Architecture 

The model architecture employed for the multi-label genre prediction task is a traditional CNN 

architecture with 25 output neurons representing the class target. This model is designed to effectively extract 

and learn features from movie posters by utilizing multiple convolutional layers, batch normalization layers, 

pooling layers, and dropout layers for regularization. Each layer plays a crucial role in enhancing the model's 

ability to accurately predict multiple genres from a single image. The details of the architecture are shown in 

Table 1. 

 

Table 1. Layer configurations of CNN models 
Layer Order Layers Type Hyperparameter Activation Function 

1 Conv2D Filter: 16, Kernel Size: (3,3) Adjustable 

2 BatchNormalization - - 

3 MaxPooling2D Pool Size: (2,2) - 

4 Dropout Rate: 0.2 - 

5 Conv2D Filter: 32, Kernel Size: (3,3) Adjustable 

6 BatchNormalization - - 

7 MaxPooling2D Pool Size: (2,2) - 

8 Dropout Rate: 0.2 - 

9 Conv2D Filter: 64, Kernel Size: (3,3) Adjustable 

10 BatchNormalization - - 

11 MaxPooling2D Pool Size: (2,2) - 

12 Dropout Rate: 0.2 - 

13 Flatten - - 

14 Dense Units: 128 Adjustable 

15 BatchNormalization - - 

16 Dropout Rate: 0.5 - 

17 Dense Units: 25 Sigmoid 

 

The architecture begins with an initial convolutional layer followed by batch normalization and max 

pooling, which helps in capturing basic spatial features while reducing the dimensionality of the data. This 

sequence of layers is the most common in various state-of-the-art CNN architecture [38]. The choice of filter 

sizes in the convolutional layers—16, 32, and 64—reflects a common practice in CNN design where smaller 

filters are used initially to capture basic features and larger filters are employed in subsequent layers to detect 

more complex patterns [39], [40]. Specifically, the initial layer with 16 filters focuses on basic textures and 

edges, while the later layers with 32 and 64 filters progressively capture more abstract and intricate features 

from the images. This hierarchical approach helps the network build a robust representation of the visual data 

[41]. 

The use of max pooling with a pool size of (2,2) reduces the spatial dimensions of the feature maps, which 

helps in decreasing the computational load and mitigating overfitting by abstracting the feature representation 

[42]. The dropout rates, set at 0.2 after each pooling layer and 0.5 before the final output, are chosen to strike 

a balance between regularization and model capacity. Dropout is employed to prevent overfitting by randomly 

deactivating a fraction of neurons during training, which helps the model generalize better to unseen data [43]. 
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Batch normalization is included to stabilize and accelerate training by normalizing the inputs to each 

layer. This technique helps in reducing internal covariate shifts and can improve convergence rates, making 

the network more robust to variations in input data [44]. The model also includes a fully connected dense layer 

that further processes the flattened feature maps before the final dense layer outputs the genre predictions. The 

adjustable activation function will be filled with various functions explained in the next section. In general, the 

matrix results from operations on the network are resized three times using pooling and then flattened as 

visualized in Fig. 5. 

 

 
Fig. 5. Visualization Result Each Layer of the CNN model 

 

2.5. Activation Functions 

Activation functions play a critical role in the performance of CNNs, especially in complex tasks like 

multi-label genre prediction from movie posters. They introduce non-linearity into the network, enabling it to 

learn and model complex data patterns. Below is a brief description of each modern activation function and its 

relevance to this work: 

1. Exponential Linear Unit (ELU): The Exponential Linear Unit (ELU) activation function aims to speed 

up the learning process by bringing the mean activations closer to zero, which improves the convergence 

rate. Unlike the ReLU function, which can result in dead neurons (neurons that stop learning completely), 

ELU has negative values that help to push the mean unit activations closer to zero [45]. This characteristic 

allows for faster and more efficient learning, especially in deeper neural networks. 

2. Gaussian Error Linear Unit (GELU): The Gaussian Error Linear Unit (GELU) activation function 

introduces smooth non-linearity, combining the benefits of ReLU and dropout regularization [46]. GELU 

applies a smoother transition for negative values compared to ReLU, which helps in retaining information 

and avoiding the zero-gradient problem. This smooth and probabilistic approach enhances the model's 

ability to capture the nuances of data, leading to improved learning dynamics and performance. 

3. Leaky Rectified Linear Unit (Leaky ReLU): The Leaky ReLU activation function addresses the "dying 

ReLU" problem, where neurons can stop learning entirely when the input is negative. Leaky ReLU allows 

a small, non-zero gradient for negative inputs, which ensures that the information flow remains active 

across the network, even for neurons that would otherwise be inactive with standard ReLU [47]. This 

small "leak" helps in maintaining a more robust gradient during backpropagation, aiding the training of 

deeper networks. 

4. Mish: Mish is a smooth, non-monotonic activation function that has been shown to outperform traditional 

activation functions like ReLU in some scenarios [48]. Mish provides a combination of desirable 

properties from both the smoothness of GELU and the flexibility of Swish. The function is defined as x ⋅ 
tanh(softplus(x)), where softplus is log(1+ex). This formulation helps in retaining information throughout 

the network, leading to better performance in complex learning tasks. 

5. Rectified Linear Unit (ReLU): The Rectified Linear Unit (ReLU) activation function is one of the most 

widely used activation functions in deep learning due to its simplicity and effectiveness [49]. ReLU 

introduces non-linearity by outputting zero for all negative input values and passing through positive input 

values unchanged. This helps in avoiding the vanishing gradient problem, allowing for faster and more 

efficient training of deep networks. However, it can suffer from the "dying ReLU" problem where neurons 

can become inactive. 

6. Scaled Exponential Linear Unit (SELU): The Scaled Exponential Linear Unit (SELU) is designed to 

induce self-normalizing properties within the network [50]. This means that during the forward pass, the 
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mean and variance of each layer's output remain constant, which helps in maintaining stable gradients. 

SELU achieves this by scaling the outputs of ELU with specific parameters (𝜆 and 𝛼), ensuring that the 

activations are centered around zero with unit variance. This self-normalizing behavior aids in the 

efficient training of deep ne tworks. 

7. Softplus: Softplus is a smooth approximation of the ReLU function, providing a continuous and 

differentiable function that mitigates the issues of zero gradients faced by ReLU. Defined as log(1+ex), 

Softplus ensures that all input values are mapped to positive output values, which helps in maintaining a 

positive and smooth gradient [51]. This function is particularly useful in scenarios where smoothness and 

differentiability are crucial for the learning process. 

8. Swish: The Swish activation function is a smooth, non-monotonic function that has been shown to 

outperform ReLU in various deep-learning tasks. Defined as 𝑥 ⋅  𝜎(𝑥)𝑥, where 𝜎(𝑥) is the sigmoid 

function [52], Swish allows a smooth transition for negative inputs, unlike the sharp cut-off in ReLU. 

This smoothness helps in retaining information and improving the gradient flow, leading to better 

performance and faster convergence in training deep neural networks. 

 

2.6. Training Procedure 

The training procedure for the multilabel CNNs is conducted using an 80-20 split of the dataset, with 80% 

allocated for training and 20% for validation, without shuffling the data. The data split is to access overfitting 

characteristics that are monitored through validation loss and accuracy metrics during training. The model's 

performance on a separate validation set, distinct from the training data, provided insights into its generalization 

capabilities and identified if it was learning noise rather than true patterns. The models are optimized using the 

Adam optimizer was considered to have performed better than others in the study [53] for image classification. 

In this study, Adam optimizer uses the following hyperparameters: a learning rate of 0.001, 𝛽1 set to 0.9, 𝛽2 

set to 0.999, and ϵ set to 1×10−7. Binary Crossentropy was used in [40] to calculate the loss between true labels 

and predicted labels for multilabel classification tasks. Binary Cross entropy is defined in [54] employed as the 

loss function in this study. This is because multi-class classification tasks are resulting binary classes and so 

the evaluation will be well-suited using binary [55]. The network will be trained for 100 epochs with a batch 

size of 32. This training procedure is not doing any hyperparameter tuning process and the parameters are not 

changed manually during the training process. However, the Adam optimizer has an adaptive learning rate that 

will be adjustable automatically during the training process [56].    

 

2.7. Performance Metric 

The performance of the multi-label CNNs was assessed using Binary Crossentropy loss and Binary 

Accuracy, which are well-suited for multi-label classification tasks. Binary Crossentropy loss was chosen 

because it effectively handles the problem of predicting multiple independent labels per instance, calculating 

the loss for each label independently, and then averaging across all labels. This metric is particularly useful in 

multi-label scenarios where each label is considered a separate binary classification problem, allowing the 

model to learn and optimize for each label's presence or absence.  

Binary Accuracy is defined as the proportion of correct predictions (true positives and true negatives) out 

of the total number of predictions [7] are used to measure the model's performance. This metric is appropriate 

for multi-label classification as it provides a clear indication of how well the model identifies the correct labels 

for each instance, considering all possible labels. It reflects the model's ability to correctly predict multiple 

genres from movie posters, which is crucial for evaluating its effectiveness in a real-world application. 

Additionally, training time was monitored to assess the computational cost of the model. This includes 

recording the duration of the overall training process to evaluate the efficiency and practicality of different 

activation functions and architectural configurations. Training time is a critical factor in understanding the 

trade-offs between model performance and resource consumption, providing insights into the feasibility of 

deploying the model in practical scenarios where computational resources may be limited. 

 

2.8. Software and Tool 

In this study the multi-label CNNs model will be developed and trained using Python programming 

language, leveraging TensorFlow framework and Keras API for the implementation. TensorFlow provided the 

backend computational framework for a heterogeneous development environment [57], while Keras a high-

level API facilitated more simple code to construct TensorFlow backend for training the neural network model. 

The development and training process are conducted on Google Colab which is a cloud service fully configured 

with the leading artificial intelligence libraries and Graphical Processing Unit (GPU) accelerating deep learning 

applications [58].  
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The computational environment utilized in this study included 56GB of RAM and an NVIDIA Tesla T4 

GPU. This computational resource has high performance in deep learning tasks by enabling parallel processing 

and efficient handling of large-scale computations [59]. The hardware setup supports higher batches of data 

and higher training speed when dealing with large datasets and complex models. However, the use of cloud-

based services like Google Colab also introduces potential limitations, such as occasional resource sharing 

from server cluster management might impact the consistency and reliability of computational resources [60]. 

 

3. RESULTS AND DISCUSSION  

This section presents the findings of the investigation performance from various activation functions used 

in the training of multilabel CNNs. The analysis focuses on three key areas: the speed of convergence for each 

activation function, the best performance achieved in terms of accuracy, and the computational cost associated 

with training each network. The analysis results obtained are compared with other studies and in the discussion 

several recommendations will be given to determine a good activation function according to needs. 

 

3.1. Speed of Convergence 

To determine which activation function reached convergence first, the training process is monitored 

across 100 epochs for each of the eight activation functions. Convergence is defined as the point where the loss 

function stabilized and further training yielded minimal improvements. Fig. 6 illustrates all epochs on the 

CNNs model, Fig. 7 presents more zoom in binary accuracy score to see more details.  

 

 
Fig. 6. Chart of binary accuracy score in the training set 

 

 
Fig. 7. Detail binary accuracy score in training set at epoch 5 - 9 

 

Fig. 6 suggests that the Softplus activation function exhibits the fastest convergence optimizing the 

network parameters. The rapid convergence observed with Softplus could initially indicate superior 

optimization capabilities. However, the convergence trends shown in Fig. 7 suggest that after 30 epochs, the 

differences in convergence speed among the activation functions diminish. The initial differences in 

convergence speed might be influenced by factors such as the specific inherent characteristics of the activation 

functions, rather than representing substantial performance advantages. 
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The observed similarity in convergence after 30 epochs suggests that while Softplus may offer quicker 

initial convergence, the ultimate performance across activation functions tends to equalize over time. This 

implies that the choice of activation function may influence the rate of convergence, but its impact on overall 

model performance may be less pronounced in the longer term. For more detailed expanations, Fig. 8 provided 

result of ANOVA test applied to the binary accuracy over 100 epochs of training, presenting both the F-statistic 

and p-value across epochs.  

 

 
Fig. 8. ANOVA test of binary accuracy 

 

The F-statistic (blue line) initially increases sharply and remainly same around 30 epochs indicating that 

variability among accuracy measurements becomes more distinct early in the training process. After this point, 

the F-statistic remains relatively stable, suggesting consistent model performance over subsequent epochs. The 

p-value (orange line) decreases rapidly from a value close to 1 at the start, reaching a stable level around 30 

epochs as well, indicating statistical significance in the differences observed among the groups. This stability 

in both metrics suggests that after 30 epoch the model has sufficiently converged and further training may yield 

diminishing returns in terms of accuracy improvement. 

 

3.2. Accuracy Performance 

The evaluation of accuracy for each activation function was carried out by examining the binary accuracy 

metric on both the training set and validation set. Comprehensive tables that detail the performance of each 

activation function in terms of accuracy across different segments of the training process are presented below. 

Specifically, the table shows the percentage of accuracy at various stages: the bottom 10%, 25%, and 50% of 

epochs, as well as the top 10%, 25%, and 50% of epochs, for both the training set and validation set. 

 

Table 2. Performance Statistics of Binary Accuracy in Training Set 
index elu gelu leaky relu mish relu selu softplus swish 

buttom10 0.89478 0.89191 0.90003 0.88979 0.89303 0.89794 0.91072 0.89145 

buttom25 0.9432 0.94248 0.95201 0.93098 0.94197 0.94462 0.95658 0.93297 

buttom50 0.96819 0.96766 0.9732 0.96074 0.9673 0.96874 0.97535 0.96218 

top10 0.99188 0.99184 0.99447 0.9878 0.99146 0.9917 0.99425 0.9885 

top25 0.99516 0.99497 0.99603 0.99367 0.99484 0.99489 0.99567 0.99406 

top50 0.99616 0.99603 0.99685 0.99525 0.99593 0.9959 0.99644 0.9954 

top1 0.99742 0.99726 0.99777 0.99689 0.99715 0.99702 0.99736 0.9965 

 

Table 3. Performance Statistics of Binary Accuracy in Validation Set 
index elu gelu leaky relu mish relu selu softplus swish 

buttom10 0.88463 0.90528 0.89971 0.90209 0.90471 0.8444 0.83086 0.90232 

buttom25 0.89891 0.90692 0.90216 0.90436 0.90565 0.88086 0.87551 0.90383 

buttom50 0.90407 0.90779 0.90364 0.90543 0.90638 0.89387 0.89096 0.90479 

top10 0.91005 0.90937 0.90611 0.90774 0.90793 0.90789 0.90714 0.90664 

top25 0.91037 0.90964 0.90657 0.90811 0.90826 0.90843 0.90752 0.907 

top50 0.91094 0.91012 0.9073 0.90893 0.90883 0.90921 0.90807 0.90763 

top1 0.91545 0.91556 0.91504 0.91487 0.91336 0.91597 0.91314 0.91303 

 

To gain deeper insights into performance analysis, the table data was visualized to highlight the accuracy 

percentages at various stages of the training process. Graphically representing the bottom 10%, 25%, and 50%, 
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as well as the top 10%, 25%, and 50% accuracy metrics for both the training and validation sets, allowing for 

clearer identification of trends and patterns. Fig. 9 and Fig. 10 facilitated a more intuitive comparison of the 

activation functions, aiming to observe their performance dynamics and stability throughout the training 

epochs. 

 

 
Fig. 9. Performance statistics of the training set 

 

 
Fig. 10. Performance statistics of the validation set 

 

From the performance statistics Table 2 and Table 3 also the accompanying visualization of the training 

and validation set accuracy metrics, several insights can be drawn regarding the performance of the different 

activation functions. In the training set, Leaky ReLU consistently outperformed other activation functions 

across all stages, including the bottom and top percentages of epochs, indicating strong and stable performance 

throughout the training process. It achieved the highest overall accuracy at 0.99777. Softplus also showed 

strong performance, particularly in the bottom 10%, 25%, and 50% epochs, indicating its effectiveness during 

the initial stages of training. ELU and GELU demonstrated competitive performance, especially in the higher 

percentages of epochs, suggesting good convergence properties. 

In the validation set, Softplus showed the lowest accuracy in the bottom 10%, 25%, and 50% epochs, 

indicating it might be less effective during the early training stages of the validation set. ELU, GELU, and 

Leaky ReLU maintained relatively high accuracy across all validation stages, with GELU achieving the highest 

overall validation accuracy at 0.91556. Mish and ReLU provided consistent and competitive performance but 

slightly trailed behind the top-performing functions in overall validation accuracy. Overall, Leaky ReLU 

emerged as the best-performing activation function in terms of training accuracy, while GELU was slightly 
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better on the validation set. To see more detail about the indication of overfitting, Fig. 11 shows the 

performance difference between the training set and the validation set.  

 

 
Fig. 11. Performance statistics of the validation set 

 

The analysis of the delta or difference between training accuracy and validation accuracy reflects the 

difference between performance on the training set and the validation set and highlights how well the model 

generalizes to unseen data. The data reveals varying levels of overfitting across different activation functions. 

Notably, activation functions like ELU and Mish exhibit smaller delta values in the top-performing categories 

(e.g., top 10, top 25, top 50), suggesting that they maintain a more balanced performance between training and 

validation sets. This indicates that these activation functions are less prone to overfitting and generalize better, 

as their performance on the validation set closely matches their performance on the training set. 

In contrast, activation functions such as SELU and Softplus show larger delta values, particularly in the 

lower-performing categories (e.g., buttom10, buttom25). These larger differences suggest that models using 

these activation functions may be experiencing overfitting, as they achieve higher accuracy on the training set 

but perform comparatively worse on the validation set. This disparity could imply that these functions lead to 

models that fit the training data too closely, capturing noise rather than generalizable patterns. The GELU and 

Swish functions show moderate delta values across different performance levels, suggesting a balanced 

approach to overfitting. They offer a reasonable trade-off between training and validation performance, but 

still, their behavior in specific scenarios should be monitored to ensure they do not overfit or underfit the data 

excessively. 

 

3.3. Computational Cost 

The computational cost of training the network with each activation function was measured in terms of 

total training time. From the hardware, computational cost analysis revealed that ReLU required the least 

amount of training time, completing the training process in ReLU hours. This indicates that ReLU is 

computationally efficient, minimizing the time and resources needed for model training. Detailed 

computational costs for each activation function are presented in Table 4 and visualized in Fig. 12. 

 

Table 4. Models training time 
Model’s Activation Function Training Time (seconds) 

ReLU 1896 

ELU 1976 

Leaky ReLU 1986 

SELU 1991 

SoftPlus 2044 

Swish 2534 

Mish 2689 

GELU 3052 
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Fig. 12. Visualization of CNNs models training time 

 

3.4. Recommendations and Limitations 

These findings highlight the importance of selecting appropriate activation functions based on the specific 

needs and stages of training for multilabel CNN models on movie poster analysis cases. As already mentioned, 

SoftPlus emerges as the top performer in terms of convergence speed, closely followed by leaky ReLU. 

However, SoftPlus and SELU exhibited signs of potential overfitting to the validation dataset due to significant 

differences between training set accuracy and validation set accuracy. To make safer activation function 

choices, consideration should be focused be a that has>90% validation accuracy in the bottom 50% of the 

training process as it shows effectiveness in maintaining generalization. Conversely to SoftPlus, GELU could 

offer better performance by adapting to varied data distributions. The discrepancies between training and 

validation performances, particularly with SoftPlus, suggest that this activation function might not generalize 

as effectively as GELU. Such discrepancies can impact practical applications where model robustness and 

generalization to new, unseen data are critical. This highlights the need for careful selection of activation 

functions, taking into account both convergence characteristics and generalization performance. 

The analysis of training times reveals notable differences in computational expense among the various 

activation functions, with some functions like GELU and Mish being more computationally intensive 

compared to others such as ReLU and ELU. However, after a very extensive and time-consuming training 

process, the experiment shows there are no significant final performance differences among diverse activation 

functions, as also mentioned in the study [61]. In the top 1, all of the activations have very similar results, but 

the difference in the training time can be up to 50% than the efficient one. In detail, while having very high 

computational resources, GELU and Mish may offer superior performance in terms of accuracy or convergence 

speed, their higher computational cost could pose challenges in scenarios requiring rapid model training or 

deployment on resource-constrained environments. While discussing cost-benefits, activation functions like 

ReLU demonstrate lower training times that provide a more cost-effective solution but very slightly sacrifice 

performance advantages offered by more complex functions. 

Due to significant differences in computational resources, with the complexity of the multi-label 

classification task, it is suggested to use the Leaky ReLU for the first experiment, as also advised in the study 

[41]. The concept of ReLU in the Leaky ReLU function strikes a balance between convergence speed and 

accuracy performance. Moreover, the simple rectifying concept requires very light computational cost [42] 

shows this function typically requires the least amount of training time compared to more complex activation 

functions. Other studies have also shown that Leaky ReLU outperforms complex activation functions in terms 

of accuracy and training speed [43]. More extended concept ReLU that have adjustable parameters make Leaky 

ReLU solve vanishing gradient problem and have better performance result [44]. However, no activation 

function consistently outperforms the others [45], choice of activation function should be guided by the specific 

characteristics of the dataset, including the degree of similarity between training and validation data, as well 

as considerations of training speed and model performance metrics. 

However, the practical implication might not represent other broader cases than movie posters considering 

that the dataset consists solely of movie posters without any augmentation. Addressing how training procedure 

variability such as adjustments to learning rates or different batch sizes might influence the performance of 

activation functions is important. Variations in these parameters can significantly impact model training 
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dynamics and overall performance [66], [67]. For instance, higher learning rates might accelerate convergence 

but could also lead to instability, while different batch sizes can affect gradient estimates and training stability 

[68], [69]. The data augmentation methods and the preprocessing methods applied can significantly influence 

the outcomes of machine learning models [70]-[76]. A more detailed exploration of how these factors interact 

with different activation functions could enhance the robustness of the comparison and improve the reliability 

of the findings.  

Future research should explore the impact of augmented data, which introduces variations and enriches 

the dataset, potentially improving model robustness and generalization. Investigating a broader range of 

training configurations, including various architectures, hyperparameters, and optimization techniques, could 

provide deeper insights into activation function performance and stability in multi-label genre prediction tasks. 

This comprehensive approach would enable a more thorough understanding of how these factors interact and 

affect model performance across diverse datasets and scenarios 

 

4. CONCLUSION 

This study underscores the importance of selecting appropriate activation functions tailored to the specific 

needs and training stages of multilabel Convolutional Neural Networks (CNNs). Our findings reveal that  

activation function have significant different characteristics in few iteration such as 15 epoch, but with 

exhaustive training iteration such as 100 epoch a slight differences are expected. Function activation SoftPlus 

exhibits superior convergence speed, it is prone to overfitting in the absence of data augmentation. In contrast, 

Leaky ReLU offers a more robust alternative, particularly for training and validating identical datasets due to 

balanced performance across various stages of training. However, GELU demonstrates superior adaptability 

to diverse data characteristics, suggesting its potential for applications involving varied data distributions. 

Notably, the Leaky ReLU activation function is recommended for initial investigations due to its advantageous 

balance between convergence speed, accuracy, and cost-benefit analysis. While computational resources are 

not the issue, other functions such as GELU are recommended for adding more performance to the multi-label 

CNNs model. 

The analysis of SoftPlus indicates a risk of overfitting but does not thoroughly discuss the impact of 

overfitting on model performance. As this work does not utilize any data augmentation, future work should 

delve deeper into overfitting issues and mitigation strategies to enhance model generalization. This includes 

exploring various augmentation methods to enrich the dataset and improve model robustness, like geometric 

transformation, color space adjustment, random noise injection, and more modern methods like synthetic data 

generation. The discussion also highlights the necessity of considering other factors that are not explored in 

this work such as network architecture, hyperparameter tuning, and optimization techniques. Variations in 

learning rates, batch sizes, and dropout rates might significantly impact the effectiveness of activation functions 

and overall model performance. Future studies that include a comprehensive analysis of these factors could 

provide a more nuanced understanding of their interplay with activation functions. 

The study's findings contribute valuable insights into the field of CNN research, offering practical 

guidelines for activation function selection and emphasizing the dynamic relationship between activation 

functions and multi-label classification tasks. However, the applicability of these findings is limited by the 

specific dataset used—movie posters—and may not be generalized to other contexts without further 

investigation. While the study provides a foundational understanding of activation functions in multilabel 

CNNs, it also calls for further research to address unresolved questions and explore additional factors 

influencing model performance. Future work should focus on detailed experimental designs and hypotheses to 

advance the field and refine activation function usage in diverse scenarios. 
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