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 VGG, ResNet, and DenseNet are popular convolutional neural network 

(CNN) designs for transfer learning (TL), aiding dermatological image 

processing, particularly in skin cancer categorization. These TL-CNN models 

build extensive neural network layers for effective image classification. 

However, their numerous layers can cause overfitting and demand substantial 

computational resources. The Bayesian CNN (BCNN) technique addresses 

TL-CNN overfitting by introducing uncertainty in model weights and 

predictions. Research contributions are (i) comparing BCNN with three TL-

CNN architectures in dermatological image processing and (ii) examining 

BCNN ability to mitigate overfitting through weight perturbation and 

uncertainty during training. BCNN uses flipout layers to perturb weights 

during training, guided by the KL divergence and Binary Cross Entropy 

(BCE) loss function. The dataset used is the ISIC Challenge 2017, categorized 

as malignant and benign skin tumors. The simulation results show that three 

TL-CNN architectures, namely VGG-19, ResNet-101, and DenseNet-201, 

obtained training accuracies of 96.65%, 100%, and 97.70%, respectively. 

However, all three were only able to achieve a maximum validation accuracy 

of around 78%. In contrast, BCNN can produce training and validation 

accuracy of 81.30% and 80%, respectively. The difference in training and 

validation accuracy values produced by BCNN is only 1.3%. Meanwhile, the 

three TL-CNN architectures are trapped in an overfitting condition with a 

difference in training and validation values of around 20%. Therefore, BCNN 

is more reliable for dermatological image processing, especially for skin 

cancer images. 
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1. INTRODUCTION  

Machine learning research in dermatological image processing is crucial in early detection and precise 

skin cancer diagnosis. Dermatological analysis plays a crucial role in identifying and skin cancer classification 

and other potentially harmful skin abnormalities. Skin cancer exhibits a significant incidence rate and is 

frequently detected at an advanced stage. Skin cancer is a common and serious disease, with melanoma being 

the most fatal type. While melanoma only accounts for about 1% of skin cancer cases, it is responsible for a 

significant number of fatalities [1], [2]. By 2024, it is estimated that around 100.000 people will have been 

affected by melanoma [1]. The disease can affect any part of the skin, particularly areas that have been exposed 

to UV light for extended periods of time [3], [4]. This can cause the skin to become darker and increase in size. 

Early detection is key in preventing death from melanoma, and it is crucial to distinguish between benign and 

malignant types [5].  
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The advancement of machine learning research aimed at creating an automated system capable of 

detecting initial indications of skin cancer holds significant clinical significance [6], [7]. Machine learning 

techniques, namely transfer learning (TL) using convolutional neural networks (CNN) like VGG, ResNet, and 

DenseNet, are employed to expedite diagnosis, enhance accuracy, and minimize human error in interpreting 

dermatological images [8], [9]. Hence, it is crucial to continue conducting thorough and focused research on 

the application of machine learning in analyzing dermatological images, particularly in the classification of 

skin cancer. This research has significant implications for enhancing patient care and contributing to the battle 

against skin cancer [10]. However, these models often suffer from overfitting, necessitating the exploration of 

alternative approaches such as Bayesian Convolutional Neural Network (BCNN) to enhance performance and 

reliability. 

Regarding the problem of overfitting that is typically encountered by conventional CNN models in the 

field of dermatological image analysis [11], the BCNN technique has emerged as a potentially useful solution. 

The uncertainty that is introduced into the model weights and predictions by BCNN contributes to the 

regularization of the model and the improvement of its generalization [12]. During the training process, BCNN 

introduces perturbations by utilizing flipout layers, which results in an increase in resilience [13]. This method 

makes use of Bayesian inference to give a probabilistic framework that is better able to manage the variety and 

complexity of skin cancer images. As a result, it is particularly well-suited for clinical applications in where 

accuracy and reliability are of the utmost importance. Despite the fact that BCNN provides a number of 

obstacles, it does offer a number of major advantages, including the reduction of overfitting and the 

improvement of model generalization. The computational complexity and training time of BCNN are higher 

than those of regular CNNs, which may limit their applicability in environmental settings with limited 

resources. In addition, because of the probabilistic nature of BCNN, it is necessary to do thorough validation 

and careful tweaking of hyperparameters in order to guarantee consistently dependable results [14]. The 

overfitting of TL-CNN models in the context of dermatological image analysis is the key issue that is addressed 

in this paper. This overfitting hinders the ability of these models to generalize successfully to novel data that 

they have not before encountered. By conducting an exhaustive analysis and comparison of the performance 

of BCNN with that of typical TL-CNN architectures, specifically in the classification of skin cancer, the 

purpose of this research is to fill the gap that has been identified. The objective of this study is to provide 

evidence that demonstrates how BCNN may successfully reduce the effects of overfitting, hence improving 

the precision and dependability of automated skin cancer detection systems. 

Lei et al. put forward a method for enhancing underwater images by focusing on pixel-based techniques. 

Their goal was to tackle issues like low contrast and color distortion by improving contrast and correcting color 

[15]. Transform-based methods for image enhancement are also being utilized. Hesseini et al. introduced a 

transform-based method for enhancing strain images while preserving spatial resolution [16]. Deng et al. halo-

free method is another example that produced halo-free images for all datasets and even achieved the highest 

entropy for certain datasets [8]. Other image enhancement methods include Yang pixel-based approach, which 

enhances images and addresses discontinuity in the lower gray region [17]. Global contrast, local contrast, and 

bright contrast stretching are additional pixel-based techniques that enhance leukemic images' interpretability 

[18]. Mouzai et al. proposed a self-supervised pixel stretching method to improve X-ray images for accurate 

diagnoses [9]. Mahmood et al. proposed a transform-based method to overcome issues like overstretching and 

unnatural image appearance [10]. There are still more image enhancement methods proposed such as fuzzified 

contrast enhancement and object-based multilevel [19],   [20]. 

Effective classification tasks require image enhancement as a crucial step [19]. This process allows 

models, such as the conventional CNN, to accurately identify the class of an image [21]. However, it is a 

common issue for machine learning models to overfit and require a large amount of data [22], [23]. Transfer 

Learning CNN (TL-CNN) is a state-of-the-art technique for CNNs that reuses obtained knowledge from source 

data to not depend on extensive labeled data, thus overcoming this limitation. TL-CNN still has its weaknesses, 

such as the catastrophic forgetting dilemma that leads to drastic changes in weights that can overfit the model 

[22], [23]. To tackle this issue, Bayesian Convolutional Neural Network (BCNN) is utilized. The BCNN can 

prevent overfitting and has been proven to produce highly accurate results in numerous studies [24], [25].  

Bargagna et al. devised a method that utilizes BCNN to analyze medical images in scenarios where resources 

are scarce. Their model achieved an impressive accuracy rate of 78.28% [26]. Zain et al. applied BCNN to the 

identification of tuberculosis and achieved remarkable accuracy rates of 96.42% and 86.46% on two distinct 

datasets [27]. Thiagarajan et al. also employed BCNN in their method for classifying breast histopathology 

images and achieved an accuracy rate of 88% in the data test [26]. Feng et al. utilized BCNN for seismic facies 

classification and achieved an accuracy rate close to 100% [28]. Joshaghani et al. utilized BCNN to classify 

http://issn.lipi.go.id/issn.cgi?daftar&1368096553&1&&


ISSN: 2338-3070 Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI) 465 

  Vol. 10, No. 2, June 2024, pp. 463-475 

 

 

Addressing Overfitting in Dermatological Image Analysis with Bayesian Convolutional Neural Network (Mulki Indana 

Zulfa) 

hyperspectral remote sensing images and their model achieved the highest accuracy rate while also being more 

resilient to overfitting [29]. Chandra et al. proposed the use of BCNN for analyzing unstructured data such as 

graphs and achieved comparable accuracy rates to those of the canonical Graph Convolutional Neural Network 

[30]. Mo et al. proposed the application of BCNN to predict or fill the one-year gap between Gravity Recovery 

and Climate Experiment and its Follow-On and their model demonstrated superior performance [31].  

Dermatological image analysis has made strides recently, highlighting the ongoing difficulty of 

overfitting in machine learning algorithms [32]. Though successful in many situations, transfer learning 

methods frequently require assistance in generalizing to fresh data, which can result in overfitting. Because 

BCNN can include uncertainty in model weights and predictions, it is becoming a potential method among the 

several that researchers have been investigating to address this problem. Improving classification accuracy and 

reducing overfitting in dermatological image processing increases diagnostic accuracy and has significant 

clinical practice consequences. This study aims to demonstrate, using BCNN, how improved model 

generalization and dependability may lead to better patient outcomes and more informed clinical choices [33]. 

This study highlights the therapeutic efficacy and prospective impact of accurate and early identification of 

skin cancer in reducing the death rate linked with melanoma and other skin malignancies. This work aims to 

address a significant gap in current research by conducting a comparative analysis of TL-CNN and BCNN for 

the purpose of skin cancer categorization. 

However, it is crucial to avoid overfitting the model. A few approaches have been suggested for CNN 

models to utilize BCNN. Therefore, the main paper contribution are (i) to compares BCNN and three TL-CNN 

architectures in dermatological image processing, and (ii) to examines BCNN ability to mitigate overfitting 

through weight perturbation and uncertainty during training. The second section of this work offers a 

comprehensive account of the simulation technique used, which encompasses a thorough discussion of the 

dataset, the TL-CNN architecture, and a complete elucidation of BCNN. The following section covers the 

simulation results and offers a comprehensive analysis, followed by a brief overview of the conclusions. 

 

2. METHODS  

2.1.  Dataset 

The experimental data originated from International Skin Imaging Collaboration (ISIC) Challenge 2017 

Datasets, containing over 2000 ldermoscopy images of skin lessions ⁠[34]. These images were categorized as 

malignant and benign skin tumors. The dataset was seperated into training and validation sets. The training set 

contained 374 malignant and 1.626 benign images, while the validation set contained 120 maligant and 30 

benign images. The split of this dataset is based on the split given by the source of the dataset. This imbalanced 

dataset was strategically chosen to research about BCNN capability to mitigate the overfitting problem due to 

imbalanced dataset is one of potential catalyst for overfitting problem [35]. 

 

2.2. Preprocessing 

Raw ISIC images typically contain a diverse artifacts, including hairs and pixel noise of various 

intensities.  Preprocessing steps are essential to reduce these artifacts and make the images better for the next 

analysis. To remove non-uniform pixel noise, the median filter offers a well-established solution [36], [37], 

[38]. Apart from noise reduction, the median filter has the additional benefit of smoothing the underlying pixel 

values (signal). Therefore, the median filter is first applied to each color channel separately to effectively 

removing noise artifacts. Segmentation of foreground objects in many cases requires image preprocessing 

techniques to enhance the difference between the object and the background. Contrast stretching, a well-known 

image processing method, can be utilized to improve the pixel intensity distribution, thus allowing for a 

smoother segmentation process [39], [40]. Arslan, et al. [41] proposed the contrast stretching method based on 

the mean and standard deviation of pixels intensities defined in (1) and (2). The resulting value were then 

mapped to the 0-255 range for each RGB channel separately before being combined back into a single image. 

 𝐿𝑜𝑤𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 = 𝑥 − (𝜎 ∗ 𝑁) (1) 

 𝐻𝑖𝑔ℎ𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 = 𝑥 + (𝜎 ∗ 𝑁) (2) 

To remove hair artifacts, a two-step procedure is done.  First, RGB photos are transformed to greyscale. 

Grayscale images with a single intensity channel are computationally more efficient than RGB images when 

performing morphological processes [42]. Second, hair pixels are reduced using a Bottom-hat filter, a 

morphological technique that combines dilation and erosion. This filter makes use of cross-shaped structural 

pieces measuring 25x25. The use of odd-sized structural pieces makes it easier to find the center, which is 
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critical for morphological operations [43]. The size 25×25 was experimentally determined through studies to 

strike a compromise between efficiently eradicating hair artifacts and reducing potential harm to existing skin 

lesions. Furthermore, the Otsu thresholding method was applied to isolate the region of interest (ROI) 

containing the lesion. The resulting segmentation mask is then used for pixel multiplication (AND) with the 

original image to preserve the lesion area. 

 

2.3. Transfer Learning 

Transfer learning has emerged as a dominat approach for medical image classification tasks either for 

convolutional neural networks or deep neural networks, that consistently achieving superior performance [44], 

[45], [46]⁠. These technique utilizes the knowledge (pre-trained) extracted from large-scale source dataset and 

applies it to new target task in this case medical image classification problem [47], [48],⁠ [49] ⁠. In this study, we 

employed pre-trained weights from well-established architectures, including VGG, ResNet, and DenseNet, all 

trained on the extensive ImageNet dataset. Furthermore, the whole model architecture in this work uses 100 

epochs, with a learning rate of 0.001 and a batch size of 16 [26]. 

VGG, Convolutional neural networks introduced by the Visual Geometry Group (VGG) for image 

classification task. There are two variants of VGG models: VGG-16 and VGG-19, named for their number of 

convolutional layers (16 and 19, respectively). The convolutional layers of VGG utilized the 3 x 3 filter with a 

stride 1 and for max-pooling layer is with a 2 x 2 filter of stride 2. Both VGG-16 and VGG-19 is followed by 

three Fully-Connected (FC) layers: the first FC layers has 4096 channels each, the third performs 1000 

classification by using soft-max activation function. All hidden layers are utilized the ReLU non-linear 

activation layer [50]⁠. In this study, instead using the 1000 classification and soft-max activation, the sigmoid 

activation layer used due to the classification task only for two classification (maligant and benign). 

ResNet, Residual Networks (ResNets) are convolutional neural networks that utilize residual learning, 

also known as skip connections, to address the degradation problem that blocks the network ability to learn 

complex features when stacking many layers in deep learning [51]⁠. Unlike VGG-19 models, which rely on 

max-pooling layers, ResNets employ residual learning through skip connections. These connections, 

mathematically represented by the formula H(x) := F(x) + x, allow the network to learn the identity mapping 

(where the output is the same as the input) in addition to the desired transformation (represented by F(x)) [52]. 

Inspired by VGG-19 architectures, these models utilize global average pooling instead of max-pooling. In this 

study, we use ResNet-50 and ResNet-101 pre-trained weights with sigmoid activation for binary classification 

for the final fully connected layer. 

DenseNet, Densely Connected Convolutional Networks is the one approach to increasing the depth of 

deep convolutional networks by addressing the problems by addressing the issues of gradient vanishing, 

redundant features, and reducing the number of parameters. Instead combine features through summation like 

ResNet, this model combine features by concatenating them. This introduced L(L+1)/2 connection in an L-

layer network [53]⁠. In this study, we use DenseNet-121 and DenseNet-169 pre-trained weights with sigmoid 

activation for binary classification for the final fully connected layer. 

 

2.4. Bayesian Neural Network 

Neural Networks (NNs) work by learning and optimizing weights to minimize a loss value based on the 

training data. This fundamental process is crucial to the training of neural networks, where the weights are 

initialized and then adjusted iteratively to reduce the loss until it converges to a minimum value, indicating that 

an ideal weight matrix has been obtained [54], [55]⁠. However, this can lead to issues such as slow convergence, 

time consumption, and getting stuck in local minima. Bayesian inference offers a powerful probabilistic 

framework for NNs. It allows us to estimate a posterior distribution over the possible weights that is typically 

expressed in the form of a posterior distribution [56]. The use of Bayesian inference is one method for 

improving medical image classification [57], [58], [59]. To estimate the posterior distribution we can use 

Bayes' theorem defined in (3): 

 
𝑃(𝑤|𝐷) =

𝑃(𝐷|𝑤) ∗ 𝑃(𝑤)

𝑃(𝐷)
 (3) 

Varitional Inference is a practical approach to approximate the posterior distribution [25]⁠. The idea iis to 

introduce a tractable distribution 𝑞(𝑤|𝜑), called the variational distribution, parametrized by set of parameters 

φ. The values of the parameters φ are then learned such that the variational distribution is as close as possible 

to the exact posterior. To measure this closeness, we utilize the Kullback-Leibler Divergence (KL Divergence). 
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This function calculates the divergence between two probability distributions. It leverages concepts from 

Shannon information theory to quantify the difference between the distributions [60] as defined in (4): 

𝐾𝐿[𝑞(𝑤|𝜑) ∥ 𝑃(𝑤|𝐷)] = ∫ 𝑞(𝑤|𝜑)𝑙𝑜𝑔 (
𝑞(𝑤|𝜑)

𝑃(𝑤)
)𝑑𝑤 + ∫ 𝑞(𝑤|𝜑)𝑙𝑜𝑔(𝑃(𝐷))𝑑𝑤

−∫ 𝑞(𝑤|𝜑)𝑙𝑜𝑔(𝑃(𝐷|𝑤))𝑑𝑤

 (4) 

To apply the varitional inference in NNs, we can use one of the simplest method that is Flipout layer. 

Introduced by Wen et al., flipout layers offer an efficient method for decorrelating the gradients between 

different training examples in neural networks [61]⁠. Flipout apply a specific type of perturbation to the weights 

during the training process. Even though Flipout layers don't fully implement a Bayesian CNN with variational 

inference, by introducing randomness through the weight perturbation, Flipout injects uncertainty into the 

weights during training. It samples from these weight distributions (kernel and bias posteriors) for each training 

step, introducing randomness into the forward pass. This is analogous to integrating over the weight 

distributions in variational inference. The mathematical expression of weight perturbation and forward defined 

in (5) and (6), respectively. In this study, the Flipout layer will be used immediately on each convolutional 

layer of the BCNN. 

𝑤𝑖 ′ = 𝑤𝑖 + 𝜀𝑖 (5) 

𝑦 = 𝜎(∑(𝑤𝑖 ′ ∗ 𝑧𝑖)) (6) 

 

2.5. Regularization Effect 

Standard neural networks with a single weight estimate can become overly reliant on specific weight 

values during training. This overreliance can lead to overfitting, where the network performs well on the 

training data but struggles with unseen data [62]. Flipout layers offer a solution to this problem. These layers 

introduce a specific type of perturbation to the weights during training. This perturbation effectively changes 

the weights used in each forward pass, even for the same training example. Consequently, the gradients 

calculated during backpropagation also vary across these multiple passes. The variations in gradients 

introduced by Flipout layers, known as decorrelated gradients, play a crucial role in addressing overfitting [61]. 

By preventing the network from relying on a single set of weight values, Flipout discourages the network from 

memorizing specific training examples. This helps the network generalize better to unseen data. Additionally, 

the decorrelated gradients encourage weight sharing across different neurons. This promotes a more efficient 

representation of the data and reduces overfitting. Finally, the multiple forward passes with perturbed weights 

can be seen as an implicit form of ensemble learning. The network explores different weight configurations, 

leading to a more robust model. 

 

2.6. Loss Function 

In the training domain of neural networks, loss functions serve as a basis for guiding the optimization 

process [63]. These functions measure the difference between the network predicted output and the true output 

(ground truth) [64], [65]⁠. This section discusses two loss functions used in this study: binary cross entropy and 

KL divergence. Binary Cross Entropy (BCE) is a basic loss function specifically designed for classification 

task that involve binary outputs (0 or 1) [66]⁠. This function mathematically quantifies the average difference 

between the network predicted probability and ground truth label associated with each data point. Thus in 

principle, BCE measures the information-theoretic difference between the ideal probability distribution 

representing the true label and the probability distribution generated by the network prediction. The 

mathematical formulation of BCE is defined in (7). 

𝐵𝐶𝐸 = −(𝑦𝑖 ∗ 𝑙𝑜𝑔(𝑝(𝑥𝑖)) + (1 − 𝑦𝑖) ∗ 𝑙𝑜𝑔(1 − 𝑝(𝑥𝑖)))
 (7) 

For a class label of 1, the loss is minimized as 𝑝(𝑥𝑖) approaches 1. This signifies high confidence in the 

positive class, indicating that the network is correctly learning to identify examples belonging to that class. 

Conversely, for a class label of 0, the loss is minimized as 𝑝(𝑥𝑖) approaches 0. This signifies high confidence 

in the negative class, indicating that the network is effectively distinguishing examples that do not belong to 

the positive class. The negative sign ensures that the loss function always yields non-negative values, with 

lower values indicating better network performance. KL divergence (KLD), also known as Kullback-Leibler 
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divergence, works as a more general measure of the information-theoretic difference between two probability 

distributions. The KL divergence presents a unique perspective. In contrast to functions such as binary cross 

entropy, it doesn't directly measure the difference between the predicted label and the actual label. Instead, KL 

divergence measures the information gain (in bits) required to represent a sample from the true distribution 

(p(x)) using a code designed for the predicted distribution (q(x)) [67]⁠. In simpler terms, it tells that how much 

additional information would be required to encode data from the true distribution if a code meant for a different 

distribution was used. The mathematical formulation of KLD defined in (8). However, a larger KL divergence 

doesn't necessarily translate to a better loss value in the context of training. This is because KL divergence is 

not a symmetric measure. In scenarios like variational inference within Bayesian neural networks, a smaller 

KL divergence is generally preferred as it indicates a closer match between the approximate and true posterior 

distributions. 

𝐾𝐿𝐷(𝑝 ∥ 𝑞) = ∑(𝑝(𝑥) ∗ 𝑙𝑜𝑔 (
𝑝(𝑥)

𝑞(𝑥)
)) (8) 

Both could be chosen depending on the conditions involved in the studies. For example, BCE is 

commonly used in simple binary classification applications because to its simplicity and computational 

efficiency. On the other hand, KL divergence could be helpful in model regularization by punishing departures 

from the prior distribution, which leads to generalization [68]. When deciding between these loss functions, 

there are tradeoffs to consider as well as computational factors. BCE is computationally less intensive and easy 

to deploy, making it ideal for large-scale binary classification tasks. KL divergence, in contrast, can be 

computationally difficult since it requires calculating the divergence across distributions; however, it provides 

a deeper foundation for models where comprehending uncertainty is crucial, such as probabilistic modeling 

and variational inference [68]. The selection between BCE and KL divergence is thus determined by the task's 

unique needs, with BCE being better for efficiency in binary classification and KL divergence providing 

advantages in scenarios requiring robust uncertainty estimates. 

 

2.7. Experimental Design  

The BCNN utilized a specific hyperparameter configuration detailed in Table 1, Table 2 is the 

hyperparameters for all model training, and Table 3 is the computational resource used in this study. The input 

data for all networks consisted of RGB images sized 50x50x3, with the corresponding binary output classifying 

images as cancerous or non-cancerous [26]. The BCE loss served as the primary loss function for all networks. 

Additionally, experiments with BCNN explored the use of KL Divergence for comparative analysis. The 

following sections describe the training and validation results each network architecture achieves. Then, the 

training and validation accuracy is compared for the evaluation metrics. Furthermore, the evaluation metric 

compares each model's training and validation accuracy. 

 

Table 1. Hyperparameters for Network Architecture 
Network conv1 conv2 conv3 conv4 conv5 conv6 FC1 

BCNN 16 32 32 64 128 256 512 

 

Table 2. Hyperparameters for Training 
Network Learning rate Batch size Layers learnt Epochs 

TL-CNN 0.001 16 2 100 

BCNN 0.001 16 All 100 

 

 

Table 3. Computational Resources 
Language Python Version 3.9 

GPU RTX 3050Ti 4GB 

Memory 16 GB RAM 

 

3. RESULTS AND DISCUSSION  

3.1. Result 

The accuracy for traing and validation for each epoch is shown in Fig. 1 – Fig. 3 for TL-CNN. The results 

revealed that training accuracy increased with each epoch. However, validation accuracy stopped improving 
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after a few epochs, suggesting overfitting. In other words, the TL-CNN model failed to generalize its 

predictions to unseen data and became overly reliant on the training data. This is evidenced by the continued 

rise in training accuracy beyond 15-20 epochs, while validation accuracy remained stagnant. In contrast, the 

BCNN architecture incorporates Flipout layers. These layers introduce weight perturbation during training, 

which acts as a regularizer and helps prevent overfitting. Consequently, the BCNN inherently addresses the 

overfitting issue observed with the TL-CNN models. Fig. 4 illustrates the accuracy for the BCNN training and 

validation data, using different loss functions. The main difference compared to TL-CNN is that the accuracy 

for both datasets increases steadily with each epoch. This shows that BCNN, most likely due to its Flipout layer 

structure, effectively overcomes the overfitting problem. Table 3 details the training and validation accuracy 

achieved by each network architecture. While the TL-CNN exhibits consistently higher training accuracy, often 

surpassing the BCNN by 17-19%, a significant drop in its validation accuracy is evident. This highlights the 

issue of overfitting in TL-CNN, where the model memorizes training data specifics and fails to generalize well 

to unseen data. The validation accuracy of TL-CNN remains below 80%, falling short of the threshold 

considered acceptable for medical diagnosis. 

However, the BCNN demonstrates a more balanced approach. Its validation accuracy consistently hovers 

around 80%, exhibiting a minimal difference of only 1.3% compared to its training accuracy. This suggests 

that the regularization effect from BCNN effectively discourages the network from memorizing specific 

training examples, making it a more suitable candidate for medical applications where reliable performance on 

unseen data is crucial. Beyond its superior performance in avoiding overfitting, the BCNN demonstrates 

surprising efficiency in terms of training time. Table 4 reveals that the BCNN achieves excellent results with 

remarkably faster training compared to TL-CNN architectures. Notably, the BCNN total training time for both 

BCE and KL Divergence loss functions falls within a range of 1.67 to 1.7 minutes, significantly less than the 

TL-CNN, which can take over 5 minutes, particularly for ResNet and DenseNet models. This advantage 

extends to individual training steps as well. The BCNN requires only 12.50 milliseconds per step, whereas the 

TL-CNN can take anywhere from two to ten times longer. 

 
 

(a) (b) 

Fig. 1. Skin cancer classification accuracy used TL-CNN: (a) VGG-16 and (b) VGG-19 

 
 

(a) (b) 

Fig. 2. Skin cancer classification accuracy used TL-CNN: (a) ResNet50 and (b) ResNet101 
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(a) (b) 

Fig. 3. Skin cancer classification accuracy used TL-CNN: (a) DenseNet169 and (b) DenseNet201 

 

(a) (b) 

Fig. 4. Skin cancer BCNN used loss function: (a) Binary Cross Entrophy and (b) KL Divergence 

 

Table 4. A Comparison of TL-CNN and BCNN 
Network Training Accuracy Validation Accuracy 

VGG-16 97.15% 75.33% 

VGG-19 96.65% 78.67% 

ResNet50 100.00% 72.67% 

ResNet101 100.00% 76.67% 

DenseNet169 98.95% 78.00% 

DenseNet201 97.70% 70.67% 

BCNN (BCE) 81.30% 80.00% 

BCNN (KL Divergence) 81.30% 80.00% 

 

Table 5. A Time Consumption Comparison of TL-CNN and BCNN 
Network Total Training Time (min) Average Training Time/step (ms) 

VGG-16 1.70 21.26 

VGG-19 3.35 24.28 

ResNet50 5.18 52.68 

ResNet101 10.20 92.80 

DenseNet169 9.46 91.23 

DenseNet201 12.03 113.56 

BCNN (BCE) 1.70 12.50 

BCNN (KL Divergence) 1.67 12.50 

 

3.2. Discussion 

The findings of our study demonstrate that both TL-CNN and BCNN methodologies exhibit significant 

promise in skin cancer classification. TL-CNN leverages the collective knowledge acquired from models 

trained on extensive datasets, enabling the identification of intricate patterns in skin cancer dataset. TL-CNN 

exhibits excellent training accuracy but is prone to overfitting during validation. However, BCNN provides 

benefits in measuring model uncertainty, enabling clinicians to assess the degree of confidence in 
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categorization conclusions. The medical setting places great emphasis on the issue of interpretability, and 

BCNN offers a more transparent framework for delivering uncertainty estimates.  

By employing the BCE loss function, BCNN can generate accurate probability predictions for binary 

classification. Nevertheless, the failure to consider model uncertainty in a medical setting can diminish the 

comprehensibility of model predictions. Conversely, KL Divergence enables BCNN to consider the uncertainty 

of the model when producing predictions, enhancing the dependability and assurance in clinical decision-

making. During the conducted simulation, it was demonstrated that utilizing the KL Divergence loss function 

resulted in a training loss value that was tenfold reduced compared to employing BCE. Hence, when selecting 

a loss function for BCNN, it is crucial to take into account both the model performance and the requirement 

for interpreting and evaluating uncertainty within the medical domain. Additional research is essential to 

understand the consequences of selecting this loss function in skin cancer categorization and other medical 

fields.  

It is important to note that TL-CNN and BCNN have their limits. TL-CNN is susceptible to overfitting 

when used with tiny datasets, whereas BCNN often demands more excellent processing resources. BCNN, or 

Bayesian Convolutional Neural Network, utilizes a Bayesian methodology to compute the posterior 

distribution. Theoretically, this could necessitate multiple samplings of the posterior distribution, which would 

demand more processing resources than traditional methods. Additionally, integrating these models with 

medical technology and formulating strategies to enhance model explainability are areas of research that show 

promise. We are confident that TL-CNN and BCNN possess significant promise in aiding clinical skin cancer 

diagnosis. These two models require further refinement to enhance their capacity to respond to the variability 

and intricacy of additional medical data. 

Both BCNN and TL-CNN have their limitations [69]. Small datasets may lead TL-CNN to overfit, 

emphasizing the model's reliance on data and the need for big, diverse datasets for efficient generalization [70]. 

Although BCNN provides better uncertainty estimation, it frequently requires more processing power. Due to 

the necessity of performing uncertainty inference in neural networks, which involves continuously sampling 

from the posterior distribution during training and inference, there is an additional computational requirement 

[71]. It also means that selecting suitable priors for consistent performance may require careful consideration 

and possibly more advanced techniques. 

Nevertheless these limitations, TL-CNN and BCNN demonstrate a great deal of promise for supporting 

clinical skin cancer diagnosis. In order to better handle the complexity and variety of new medical data, these 

models need to be substantially improved. Promising research areas include integrating these models with 

medical technology and developing techniques to improve model explain ability. Enhancing these models' 

precision and reliability can ultimately result in better patient outcomes and more knowledgeable clinical 

judgment, highlighting the significance of this research for the medical sector. 

 

4. CONCLUSION 

The paper performs a comparative analysis of three TL-CNN architectures along with BCNN for the 

purpose of classifying skin cancer. TL-CNN architectures, such as VGG, ResNet, and DenseNet, effectively 

address this issue, achieving training accuracy ranging from 96.65% to 100%. However, these three TL-CNN 

designs exhibit overfitting issues, with the most significant disparity between training and validation accuracy 

values being 21.82% for VGG, 27.33% for ResNet, and 27.03% for DenseNet. The BCNN model demonstrated 

distinct outcomes by effectively mitigating the overfitting issue, achieving training and validation accuracy 

rates of 81.30% compared to 80% when employing both the BCE loss function and KL Divergence. 

Furthermore, the BCNN exhibits remarkable efficacy in terms of the duration required for training. The 

simulation results demonstrate that BCNN exhibits a training process that is 34% more expedient than the 

training period achieved by TL-CNN. 
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