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 Detecting software defects early on is critical for avoiding significant 

financial losses. However, building accurate software defect prediction 

models can be challenging due to class imbalance, where the data for 

defective modules is much less than for standard modules. This research 

addresses this issue using the imbalanced dataset NASA MDP. To address 

this issue, researchers have proposed new methods that combine data level 

balancing approaches with 14 variations of the SMOTE algorithm to increase 

the amount of defective module data. An algorithm-level approach with three 

boosting algorithms, Catboost, LightGBM, and Gradient Boosting, is applied 

to classify modules as defective or non-defective. These methods aim to 

improve the accuracy of software defect prediction. The results show that this 

new method can produce a more accurate classification than previous studies. 

The DSMOTE and Gradient Boosting pair with 0.9161 has the highest 

average accuracy (0.9161). The DSMOTE and Catboost model achieved the 

highest average AUC value (0.9637). The ADASYN kernel and Catboost 

showed the best ability to perform the average G-mean value (0.9154). The 

research contribution to software defect prediction involves developing new 

techniques and evaluating their effectiveness in addressing class imbalance.  
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1. INTRODUCTION  

In this digital age, software is becoming essential in various aspects of human life in the 21st century [1]. 

A minor defect in any software can lead to software failure. According to Huang & Strigini, in 2018, the cost 

of finding and fixing defects worldwide was estimated to be trillions of dollars [2]. Defect prevention is critical 

because once defects are created in the code, it is difficult to ensure that all such defects will be found and 

removed through testing. Therefore, the prediction of problematic modules at an early stage is more beneficial 

and also reduces the overall cost of the software [3]. Software defect prediction uses machine learning 

classifiers to identify defect-prone software modules [4]. By identifying problematic modules early, developers 

can focus on them during testing and reduce the chances of undetected defects. 

However, building an effective defect prediction model can be complicated due to the problem of 

imbalanced data. This occurs when the amount of data in two different classes in a dataset is imbalanced, where 

there is a significant difference between the amount of data in the majority and minority classes. Meng and Li 

revealed that the majority class has significantly more data, while the minority class has significantly less data 

[5]. This imbalance can disrupt the learning process of the model and result in inaccurate predictions [6]. There 

are several solutions to overcome the problem of class imbalance, which are divided into three types of 

approaches: data level, algorithm level and hybrid [7]. At the data level, oversampling approaches are widely 

used to overcome class imbalance [8], and ensemble learning can be used at the algorithm level to improve 

model performance. In this study using 3 boosting algorithms namely Catboost, LightGBM, and Gradient 

Boosting.  
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Vardhan et al. found that Catboost is very effective in detecting software bugs. The study compared 

Catboost with other classification algorithms using the NASA MDP dataset. Catboost produced higher 

accuracy, with scores of 0.82 on CM1, 0.72 on JM1, 0.84 on KC2, and 0.87 on PC3. These results indicate that 

Catboost can help improve software quality [9]. Based on the research of Fahimuzzman Sohan et al. showed 

that Gradient Boosting is a very effective method for handling imbalanced datasets. This study uses the 

SeaCraft dataset, Gradient Boosting was compared with several other classification methods. The results show 

that Gradient Boosting produces the highest accuracy, which is 0.95 on imbalanced data [10]. In research [11], 

focused on predicting software defects using three classification models: Gradient Boosting LightGBM, 

XGBoost, and CatBoost. This research uses datasets CM1, JM1, PC1, KC1, and KC2. The results showed that 

LightGBM with GridSearchCV library gave the most dominant performance (98%) compared to other 

algorithms.  

Research by Malhotra and Jain found that using a resampling technique before applying the Boosting 

method can help improve prediction models. One of the resampling techniques that can be used to address an 

unbalanced dataset is SMOTE [12]. Although SMOTE is commonly used in software defect prediction 

research, there is still relatively little research on its variants. In fact, SMOTE Variants can provide a wider 

range of solutions to overcome data imbalance problems in machine. Hassanat et al. evaluated and ranked over 

70 over-sampling methods on three imbalanced real-world datasets. The MOT2LD (Rank 8), CURE SMOTE 

(Rank 9), Edge Det SMOTE (Rank 17), SDSMOTE (Rank 16), DSMOTE (Rank 1), and NT SMOTE (Rank 

11) methods showed superior performance to SMOTE (Rank 24) based on the average error value [13]. Kovács 

evaluated the performance of several oversampling methods in improving classification performance. In SVM, 

GSMOTE, and CE classification, SMOTE showed higher AUC values than SMOTE, 0.9062 and 0.9056 

compared to 0.8999. In Decision Tree classification, SMOTE IPF, Assembled SMOTE, and Lee also showed 

higher AUC values, 0.8828, 0.8834, and 0.8883, compared to 0.8809 in SMOTE. The results of this study 

show that oversampling can help improve classification performance, and some oversampling methods proved 

to be more effective than SMOTE [14]. Zhai et al. [15] proposed an OUPS oversampling method that uses an 

enhanced GAN to improve classification performance on imbalanced numerical datasets. The results show that 

OUPS is more effective than SMOTE in improving AUC.  

 According to the research on [16], DTS2, G-SMOTE, Edge Det SMOTE, and SDSMOTE datasets 

produce better results than SMOTE concerning AUC. The study revealed that G-SMOTE achieved an AUC 

value of 0.8857, while Edge Det SMOTE obtained an AUC value of 0.8798, and SDSMOTE obtained an AUC 

value of 0.8823On the other hand, SMOTE achieved an AUC value of only 0.8779. Ding et al. conducted 

research on state-of-the-art sampling techniques across nine image classification datasets, each with varying 

levels of imbalance, and the ADASYN Kernel produced higher AUC than SMOTE on several datasets, 

including Lung, Colon, Glioma, Haberman, Vehicle, CMC, Balance, and Zooscan [17]. Dudjak and Martinović 

evaluated the performance of several oversampling methods and classification algorithms. It was found that 

SMOTE D was the best oversampled for 5-NN classification, with an F1 score of 4.175, outperforming 

SMOTE with a score of 5.275 [18]. Research [19] shows the superiority of the CBSO method over SMOTE in 

handling unbalanced data. CBSO achieved better performance on the Glass, Yeast, and Pima datasets, with G-

mean of 0.9536, 0.7683, and 0.7367, compared to SMOTE's 0.9412, 0.7298, and 0.7170. This significant 

increase in G-mean suggests that CBSOs are more effective in addressing minority classes in the data, resulting 

in more accurate classification models.  

According to researches [13]-[19] study SMOTE Variants have performed better than the original 

SMOTE. However, using SMOTE Variants for software defect prediction with the NASA MDP dataset still 

requires further research. Another research study [12] suggests boosting after SMOTE can enhance model 

performance. Research [9]-[11] have demonstrated that boosting algorithms like CatBoost, LightGBM, and 

Gradient Boosting are highly effective in software defect prediction and produce accurate results.  

The aim of this study is to identify the best combination of SMOTE and its Variants to enhance the 

performance of Catboost, LightGBM, and Gradient Boosting algorithms in predicting software defects, 

especially in cases where data imbalance is a problem. This research introduces a novel approach to software 

defect prediction that integrates 14 different variations of SMOTE with three boosting algorithms. This method 

is expected to address the issue of imbalanced datasets and generate more accurate classifications than previous 

research. 

 

2. METHODS  

The research flow carried out in the study can be seen Fig. 1. The first step is to process the initial data 

by converting categorical variables into numerical values. Then, the data is split into training and test data. To 

address any imbalances in the data, we apply SMOTE Variants before utilizing boosting algorithms such as 
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Catboost, LightGBM, and Gradient Boosting. To ensure optimal performance of the machine learning model 

in various scenarios, we evaluate its performance using ten cross-validation and various evaluation metrics 

such as accuracy, AUC, and g-mean. 

 

 
Fig. 1. Research Flow 

 

2.1. Data Collection 

NASA MDP (Metrics Data Program) is a public data repository widely used in software defect prediction 

research [20]. The dataset used in this study is the NASA MDP with version D” or a cleaned data version. It 

comprises datasets from 12 projects: CM1, JM1, KC1, KC3, MC1, MC2, MW1, PC1, PC2, PC3, PC4, and 

PC5. Table 1 contains details from the NASA MDP D dataset. 

 

Table 1. NASA MDP D" 

Dataset  Attributes Module Defective Non-Defective Defective (%) 

CM1 38 327 42 285 12.8 

JM1 22 7720 1,612 6,108 20.8 

KC1 22 1162 294 868 25.3 

KC3 40 194 36 158 18.5 

MC1 39 1952 36 1916 1.8 

MC2 40 124 44 80 35.4 

MW1 38 250 25 225 10 

PC1 38 679 55 624 8.1 

PC2 37 722 16 706 2.2 

PC3 38 1053 130 923 12.3 

PC4 38 1270 176 1094 13.8 

PC5 39 1694 458 1236 27.0 

 

2.2. Prepocessing 

Preprocessing is essential for maximizing the accuracy of machine learning models fed with datasets [21]. 

When dealing with ordinal categorical features, where order matters, label encoding is the preferred technique 

[22]. This is exemplified by the "target class" attribute with nominal Boolean values ("Y" for defective and 

"N" for non-defective modules). Label encoding converts these qualitative labels ("Y" and "N") into numerical 

values in Table 2. This transformation enhances model comprehension and processing, ultimately improving 

training and evaluation efficiency. 

 

Table 2. Lable Encoding 

Label Encoding Description 

1 Defective (Y) 

0 Non-Defective (N) 
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2.3. Data Splitting 

The research data is divided into two parts: training data and testing data. This data separation is a 

common technique in data science and machine learning to objectively evaluate models. The research data was 

split into two parts, with a ratio of 70% for training data and 30% for test data. This ratio was chosen based on 

research [23] which demonstrated that the 70:30 ratio resulted in the best model performance compared to 

other ratios. To evaluate model performance, 10-fold cross-validation is used. This method divides the training 

data into ten subsets, and the model is trained and tested on nine subsets in turn. The average of the evaluation 

metrics from these ten iterations is used to estimate the model's performance on unseen data. The selection of 

10-fold cross-validation was based on [23]-[25] studies showing that k=10 resulted in more accurate 

estimations, reduced bias, and overfitting. 

 

2.4. SMOTE Variants 

SMOTE (Synthetic Minority Oversampling Technique) is a resampling technique that generates new 

samples to increase the minority class by creating synthetic instances along the line segments [27]. Over the 

past decade, many variants for SMOTE have been proposed. To handle the issue of data class imbalance, this 

study utilizes 14 specifically selected SMOTE Variants. These variants were chosen after performing a 

comparative evaluation of 85 variants on large, unbalanced datasets, as referenced in [14]. SMOTE Variants 

used in this study is available in a Python package that can be accessed on the documentation page http://smote-

variants.readthedocs.io.  

a. SMOTE IPF consists of SMOTE and IPF (Iterative Filter Partition). SMOTE-IPF improves the 

oversampling process in SMOTE by removing noisy data points from the majority class to enhance model 

performance in imbalanced classification tasks [28].  

b. Kernel ADASYN uses a kernel-based adaptive synthetic over-sampling approach to address data 

imbalance. These techniques rely on local information rather than the overall data distribution [29]. 

c. MOT2LD is a method used for taking measurements by determining the Local Density dataset in a Low 

Dimensional Space. Initially, the dataset is represented in a smaller dimension, meaning feature selection 

is done to find the best combination. The results of the representation are obtained by clustering the values 

of Local Minority Density and Local Majority Count, which indicate the required levels of samples to create 

new synthetic data [30]. 

d. OUPS is an oversampling technique that uses propensity score matching to select neighbors and generates 

synthetic samples through SMOTE [31]. 

e. SMOTE D algorithm selects minority instances based on their deviation of distances. This algorithm has 

the least impact on the performance of the majority class and it statistically outperforms other algorithms 

[18]. 

f. CURE SMOTE (Combination of Clustering Using Representatives Synthetic Minority Oversampling 

Technique) Experiments on the UCI imbalanced data show that the original Synthetic Minority Over-

sampling Technique is effectively enhanced by the use of the combination of clustering using representative 

algorithm [32]. CURE-SMOTE uses the hierarchical clustering algorithm CURE to clear outlier data before 

applying SMOTE [33]. 

g. Edge Det SMOTE proposed edge detection algorithm Egde-Det, this method generates synthetic data based 

on the sample weight calculated by the overall magnitude of gradient. 

h. CBSO is a cluster-based synthetic oversampling algorithm that effectively deals with imbalanced data 

problems. It has been used widely in data analysis and has proven effective with synthetic oversampling 

techniques like SMOTE and ADASYN, which use a KNN approach. The algorithm can also reduce the 

impact of imbalanced data on classification by oversampling only the minority examples near the 

borderline [34]. 

i. Assembled SMOTE is a minority oversampling technique that connects minority samples near the decision 

boundary with minority samples farther away, thereby improving data diversity and machine learning 

model performance in handling imbalanced data [35]. 

j. SDSMOTE is a method used to address the issue of imbalanced datasets with a significantly smaller 

minority class, often resulting in inaccurate models. This method creates synthetic minority class samples 

to tackle the problem. Unlike SMOTE, which randomly selects neighbors, SDSMOTE views the data as a 

solid graph and ensures that the overall distribution remains stable by carefully positioning new samples. 

This leads to more effective oversampling without compromising the integrity of the original data [36]. 

k. DSMOTE (Diversity and Separable Metrics in Over-Sampling Technique) method that improves the 

accuracy. Anomalous samples are removed from the negative class. The top three samples are then 

considered based on a criteria and synthetic data is generated based on these samples [37]. 
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l. GSMOTE employs bootstrapping as part of its hybrid sampling technique, effectively addressing the 

challenge of highly skewed data distributions [38]. 

m. NT SMOTE is an up-sampling approach that utilizes the neighborhood triangular synthetic minority over-

sampling technique to address the issue of unsatisfactory results in imbalanced risk prediction for minority 

class samples [39]. 

n. Lee generates a new synthetic observation with SMOTE, and includes a step to assess whether the 

observation is noise. For example, when 𝑘 is 5 and the rejection level is 3, the resulting synthetic 

observations are removed for C with three or more of the five surrounding observations. However, in the 

case of F, with two or less majority class observations, the synthetic observations are maintained [40]. 

 

2.5. Algorithm Boosting 

Boosting, an algorithm-level approach used in this research is Catboost, LightGBM, and Gradient 

Boosting. CatBoost is an algorithm was developed by Yan dex researchers for gradient boosting on decision 

trees, which can handle categorical features in the training phase [41]. In the decision tree, the label means will 

also be the criterion for node splitting, also known as greedy target variable statistics, and the formula is 

expressed as (1) [42]: 

 
�̂�𝑘

𝑖
=

∑ [𝑥𝑗,𝑘 =  𝑥𝑖,𝑘]
𝑝−1
𝑗=1 .  𝛾𝑖

∑ [𝑥𝑗,𝑘 =  𝑥𝑖,𝑘]𝑛
𝑗=1

 
(1) 

LightGBM is one of the boosting algorithms that use a "leaf-wise" algorithm to grow trees vertically. 

Microsoft launched LightGBM (Light Gradient Boosting Machine) in 2017 [43]. In addition, LightGBM uses 

a histogram-based method to find the best splitting candidate [44]. According to the level-wise growth strategy, 

the leaves on the same layer are simultaneously split. Leaves on same layer are indiscriminately treated, 

whereas they have different information gain. Information gain indicates the expected reduction in entropy 

caused by splitting the nodes based on attributes (2) [45].  

 

𝐼𝐺(𝐵, 𝑉) = ∑ −𝑝𝑑 log2 𝑝𝑑,

𝐷

𝑑=1

− ∑
|𝐵𝑣|

𝐵
𝑣∈(𝑉)

𝐸𝑛(𝐵𝑣)
 

(2) 

where 𝑝𝑑 is the ration of 𝐵 pertaining to category 𝑑, 𝐷 is the number of categories, is the value of attribute 𝑉, 

and 𝐵𝑣 is the subset of 𝐵 for which attribute has value. 

Gradient Boosting is one of the ensemble machine-learning methods introduced by Friedman in 2001 

[46]. Gradient Boosting is applied to regression and classification problems; this model works by giving a 

certain weight to each data point [47]. Gradually, the learning process builds a model by combining several 

weak prediction models, usually a decision tree [48]. The GBT (gradient boosting tree) can be defined as the 

summation of 𝑛𝑛 regression-trees [49] in (3). Where every 𝑓𝑖(𝑥𝑡) is a decision tree (regression-tree).  

 
𝐹𝑛(𝑥𝑡) = ∑ 𝑓𝑖(𝑥𝑡)

𝑛

𝑖=1

 
(3) 

 

2.6. Evaluation 

In Software Defect Prediction, performance assessment is usually calculated based on a confusion matrix 

[50]. An example of a confusion matrix can be seen in the following Table 3. Classification results are evaluated 

in terms of accuracy, AUC and G-mean. In the field of machine learning, accuracy has always been the primary 

metric used to measure the performance of conventional algorithms. However, when dealing with imbalanced 

datasets, where one class has significantly more samples than the others, the reliability of this metric decreases. 

In such cases, the accuracy can overestimate the classifier's ability to identify the majority class [51]. Therefore, 

this study has adopted more robust evaluation metrics such as AUC and G-mean to assess the performance of 

the classifier [34], [50]. 

 

Table 3. Confusion Matrix 

 Predictive Negative Predictive Positive 

Actual Negatif True Negative (TN) False Positive (FP) 

Actual Positive False Negative (FN) True Positive (TP) 
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a. Accuracy is the ratio of correctly classified modules to the total number of modules. Equation (4) used to 

calculate Accuracy is as follows:  

 
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

 
(4) 

b. AUC Area Under Curve (AUC) is the percentage of area under the Receiver Operator Characteristic 

(ROC) curve. Equation (5) used to calculate Accuracy is as follows: 

 
𝐴𝑈𝐶 =  

1 + 𝑇𝑃𝑟 −  𝐹𝑃𝑟

2

 
(5) 

c. G-mean (Geometric Mean) measures central tendency that calculates the average of sensitivity and 

specificity. Equation (6) used to calculate Accuracy is as follows: 

 𝐺 − 𝑚𝑒𝑎𝑛 =  √𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙 (6) 

 

3. RESULTS AND DISCUSSION  

This study assessed 15 classification models, each utilizing a boosting approach, specifically CatBoost, 

LightGBM, and Gradient Boosting. The initial model runs without SMOTE, while the other 14 models run 

with 14 different SMOTE variations. Subsequently, the accuracy, AUC, and G-mean values will be 

observed for each model. 

 

3.1. Classification with Catboost 

The software defect prediction model with the Catboost algorithm was measured, and the results are 

presented in Table 4, Table 5, and Table 6. Table 4 displays the accuracy results, Table 5 presents the AUC, 

and Table 6 shows the G-mean results. Using SMOTE Variants in software defect prediction models has proven 

more effective than Boosting models without SMOTE Variants. Higher accuracy, AUC scores, and G-

mean were observed in all datasets, and based on the test results in Table 4, Table 5, and Table 6.  

 

Table 4. Accuracy Results of SMOTE Variants in Catboost Classification 
 CM1 JM1 KC1 KC3 MC1 MC2 MW1 PC1 PC2 PC3 PC4 PC5 

Without 

SMOTE 

0.8678 0.7946 0.7718 0.4199 0.9799 0.7042 0.8873 0.9129 0.9770 0.8553 0.8956 0.7778 

SMOTE IPF 0.9347 0.8636 0.8348 0.8955 0.9908 0.8205 0.9464 0.9578 0.9804 0.9272 0.9485 0.8391 

Kernel 

ADASYN 

0.9446 0.8626 0.8290 0.9045 0.9915 0.8295 0.9430 0.9667 0.9814 0.9264 0.9491 0.8385 

MOT2LD 0.9160 0.8650 0.8215 0.9095 0.9885 0.7627 0.9375 0.9552 0.9911 0.9281 0.9466 0.8405 

OUPS 0.8392 0.8590 0.7928 0.8455 0.9849 0.7409 0.8614 0.9178 0.9578 0.8976 0.9233 0.8235 

SMOTE D 0.9176 0.8679 0.8271 0.8927 0.9904 0.7848 0.9241 0.9592 0.9892 0.9255 0.9365 0.8461 

CURE 

SMOTE 

0.9146 0.8659 0.8430 0.9045 0.9901 0.7568 0.9369 0.9522 0.9833 0.9287 0.9381 0.8529 

Edge Det 

SMOTE 

0.9422 0.8622 0.8233 0.8864 0.9908 0.7932 0.9431 0.9589 0.9833 0.9294 0.9452 0.8345 

CBSO 0.9473 0.8615 0.8143 0.9000 0.9901 0.8121 0.9276 0.9511 0.9814 0.9257 0.9452 0.8379 

Assembled 

SMOTE 

0.9297 0.8621 0.8290 0.8955 0.9919 0.8114 0.9430 0.9622 0.9824 0.9332 0.9504 0.8402 

SDSMOTE 0.9322 0.8619 0.8232 0.9182 0.9915 0.7311 0.9464 0.9622 0.9833 0.9279 0.9517 0.8356 

DSMOTE 0.9222 0.8778 0.8602 0.8773 0.9901 0.8106 0.9403 0.9567 0.9853 0.9325 0.9471 0.8645 

G SMOTE 0.9422 0.8651 0.8315 0.8909 0.9919 0.8136 0.9337 0.9633 0.9843 0.9416 0.9452 0.8420 

NT SMOTE 0.9196 0.8622 0.8290 0.8909 0.9901 0.7939 0.9556 0.9556 0.9814 0.9226 0.9356 0.8420 

Lee 0.9146 0.8665 0.8364 0.9091 0.9897 0.8023 0.9462 0.9533 0.9843 0.9287 0.9381 0.8460 

 

Assembled SMOTE and G-SMOTE demonstrated the highest accuracy performance, achieving a score 

of 0.9919 in the MC1 dataset. This indicates that combining these two techniques improved the model's ability 

to classify instances within this dataset accurately. On the other hand, the Without SMOTE pair in the KC3 

dataset recorded the lowest accuracy value, with a score of 0.4199. This suggests that the dataset may need to 

be more balanced, making it easier for the model to accurately classify instances without using techniques such 

as SMOTE to address this imbalance. In addition, CBSO and Catboost outperformed other variants in terms of 

AUC, with a score of 0.9993 in the PC2 dataset, and Assembled SMOTE again demonstrated the best 

performance in terms of G-mean, with a score of 0.9938 in the MC1 dataset. However, the CM1, MW1, and 

PC2 datasets recorded the lowest AUC and G-mean values, NaN, without SMOTE. This highlights the 

importance of handling class imbalance for reliable model evaluation, especially when dealing with datasets 

dominated by a majority class. 
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Table 5. AUC Results of SMOTE Variants in Catboost Classification 
 CM1 JM1 KC1 KC3 MC1 MC2 MW1 PC1 PC2 PC3 PC4 PC5 

Without 

SMOTE 

NaN 0.7102 0.6879 0.7797 0.8888 0.7953 NaN 0.8634 NaN 0.8211 0.9296 0.8037 

SMOTE IPF 0.9889 0.9239 0.8895 0.9686 0.9993 0.8630 0.9904 0.9925 0.9992 0.9829 0.9912 0.9226 

Kernel 

ADASYN 

0.9881 0.9251 0.8939 0.9694 0.9995 0.8669 0.9896 0.9947 0.9991 0.9841 0.9911 0.9244 

MOT2LD 0.9703 0.9241 0.8833 0.9565 0.9975 0.8546 0.9717 0.9896 0.9982 0.9808 0.9915 0.9145 

OUPS 0.9253 0.9172 0.8605 0.9048 0.9984 0.8025 0.9456 0.9778 0.9937 0.9703 0.9845 0.9068 

SMOTE D 0.9757 0.9210 0.8906 0.9600 0.9973 0.8593 0.9795 0.9902 0.9995 0.9773 0.9895 0.9249 

CURE 

SMOTE 

0.9669 0.9198 0.8899 0.9467 0.9981 0.8569 0.9845 0.9898 0.9989 0.9782 0.9895 0.9253 

Edge Det 

SMOTE 

0.9852 0.9244 0.8915 0.9507 0.9990 0.8638 0.9864 0.9947 0.9993 0.9834 0.9908 0.9193 

CBSO 0.9899 0.9198 0.8792 0.9663 0.9993 0.8514 0.9813 0.9909 0.9998 0.9811 0.9900 0.9213 

Assembled 

SMOTE 

0.9828 0.9243 0.8924 0.9505 0.9994 0.8695 0.9886 0.9934 0.9991 0.9839 0.9910 0.9243 

SDSMOTE 0.9859 0.9248 0.8888 0.9663 0.9994 0.8427 0.9928 0.9938 0.9993 0.9847 0.9917 0.9185 

DSMOTE 0.9775 0.9383 0.9195 0.9375 0.9970 0.9218 0.9684 0.9884 0.9983 0.9805 0.9919 0.9454 

G SMOTE 0.9889 0.9240 0.8947 0.9637 0.9993 0.8469 0.9765 0.9955 0.9995 0.9856 0.9918 0.9282 

NT SMOTE 0.9802 0.9238 0.8937 0.9587 0.9986 0.8495 0.9771 0.9917 0.9990 0.9796 0.9901 0.9217 

Lee 0.9710 0.9232 0.8878 0.9593 0.9979 0.8743 0.9758 0.9893 0.9982 0.9780 0.9904 0.9238 

 

Table 6. G-mean Results of SMOTE Variants in Catboost Classification 
 CM1 JM1 KC1 KC3 MC1 MC2 MW1 PC1 PC2 PC3 PC4 PC5 

Without 

SMOTE 

NaN 0.3466 0.4311 0.7692 0.4388 0.5949 NaN 0.3599 NaN 0.2575 0.6533 0.5785 

SMOTE 

IPF 

0.9589 0.8325 0.8151 0.8925 0.9932 0.8288 0.9597 0.9690 0.9385 0.9385 0.9625 0.8438 

Kernel 

ADASYN 

0.9672 0.8311 0.8186 0.9098 0.9936 0.8399 0.9581 0.9764 0.9376 0.9376 0.9648 0.8495 

MOT2LD 0.9208 0.8391 0.8038 0.9182 0.9894 0.7601 0.9378 0.9527 0.9418 0.9418 0.9543 0.8444 

OUPS 0.8446 0.8205 0.7665 0.8408 0.9844 0.7480 0.8667 0.9218 0.8979 0.8979 0.9375 0.8231 

SMOTE D 0.9231 0.8225 0.7892 0.8915 0.9881 0.7389 0.9144 0.9535 0.9187 0.9187 0.9328 0.8197 

CURE 

SMOTE 

0.9021 0.8209 0.7958 0.8828 0.9865 0.7506 0.9401 0.9464 0.9201 0.9201 0.9318 0.8203 

Edge Det 

SMOTE 

0.9661 0.8331 0.8029 0.9046 0.9925 0.8011 0.9488 0.9669 0.9392 0.9392 0.9606 0.8364 

CBSO 0.9656 0.8257 0.7965 0.9089 0.9929 0.8092 0.9447 0.9642 0.9366 0.9366 0.9603 0.8430 

Assembled 

SMOTE 

0.9526 0.8296 0.8158 0.9007 0.9938 0.8041 0.9550 0.9732 0.9446 0.9446 0.9663 0.8437 

SDSMOTE 0.9525 0.8296 0.8075 0.9189 0.9936 0.7379 0.9640 0.9722 0.9419 0.9419 0.9648 0.8382 

DSMOTE 0.9013 0.8360 0.8174 0.8544 0.9860 0.7608 0.9322 0.9438 0.9176 0.9176 0.9378 0.8398 

G SMOTE 0.9535 0.8344 0.8145 0.8901 0.9930 0.7873 0.9413 0.9693 0.9520 0.9520 0.9597 0.8494 

NT 

SMOTE 

0.9294 0.8298 0.8042 0.8803 0.9879 0.7857 0.9522 0.9545 0.9216 0.9216 0.9396 0.8370 

Lee 0.8970 0.8394 0.8182 0.9130 0.9912 0.7815 0.9420 0.9437 0.9351 0.9351 0.9427 0.8497 

 

3.2. Classification with LightGBM 

A software defect prediction model was evaluated using the LightGBM algorithm, and the findings are 

presented in three tables: Table 7 shows the accuracy results, Table 8 presents the AUC (Area Under the Curve) 

results, and Table 9 displays the G-mean results. The test results in Table 7, Table 8, and Table 9 showed that 

the combination of Assembled SMOTE and the LightGBM algorithm achieved the highest accuracy of 0.9915 

on the MC1 dataset. This indicates that using these two techniques together is particularly effective in 

improving the model's ability to correctly categorize instances in this dataset, which may have a significant 

class imbalance. However, CBSO performed better than the others in AUC, scoring 0.9993 on the PC2 dataset. 

CBSO is particularly effective in distinguishing between positive and negative classes in this dataset, leading 

to high accuracy in this metric. The ADASYN kernel achieved the highest score of 0.9925 on the MC1 dataset 

for G-mean, indicating that ADASYN is particularly effective in balancing the class distribution and enhancing 

the model's ability to classify instances in this dataset correctly. The KC3 dataset obtained an accuracy score 

of 0.3960 without using SMOTE. It scored the lowest value of NaN for AUC and G-mean on the CM1, MW1, 

and PC2 datasets without SMOTE. This indicates that the model encountered issues during the evaluation 

of these datasets, potentially due to class imbalance or extreme values, leading to NaN values in the metrics. 
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Table 7. Accuracy Results of SMOTE Variants in LightGBM Classification 
 CM1 JM1 KC1 KC3 MC1 MC2 MW1 PC1 PC2 PC3 PC4 PC5 

Without 

SMOTE 

0.8551 0.7885 0.7500 0.3960 0.9799 0.6931 0.8928 0.9129 0.9674 0.8567 0.8822 0.7536 

SMOTE IPF 0.9322 0.8629 0.8208 0.9136 0.9908 0.6955 0.9462 0.9667 0.9853 0.9309 0.9401 0.8414 

Kernel 

ADASYN 

0.9372 0.8615 0.8281 0.9136 0.9915 0.7576 0.9430 0.9656 0.9853 0.9310 0.9459 0.8425 

MOT2LD 0.9291 0.8631 0.8088 0.9097 0.9889 0.7445 0.9406 0.9540 0.9891 0.9422 0.9426 0.8376 

OUPS 0.8744 0.8616 0.8018 0.8773 0.9849 0.6515 0.8864 0.9433 0.9745 0.9112 0.9201 0.8235 

SMOTE D 0.9200 0.8687 0.8279 0.8842 0.9879 0.7856 0.9303 0.9593 0.9853 0.9255 0.9319 0.8410 

CURE 

SMOTE 

0.9221 0.8656 0.8306 0.8909 0.9890 0.7402 0.9493 0.9467 0.9873 0.9204 0.9311 0.8379 

Edge Det 

SMOTE 

0.9272 0.8631 0.8241 0.9000 0.9901 0.7576 0.9399 0.9656 0.9853 0.9302 0.9394 0.8385 

CBSO 0.9272 0.8644 0.8085 0.9000 0.9901 0.7492 0.9275 0.9511 0.9873 0.9279 0.9414 0.8345 

Assembled 

SMOTE 

0.9347 0.8636 0.8249 0.8773 0.9915 0.8197 0.9464 0.9644 0.9824 0.9325 0.9465 0.8368 

SDSMOTE 0.9272 0.8649 0.8348 0.9000 0.9904 0.7492 0.9556 0.9644 0.9824 0.9363 0.9465 0.8362 

DSMOTE 0.9146 0.8783 0.8602 0.8591 0.9901 0.8114 0.9309 0.9533 0.9853 0.9294 0.9517 0.8668 

G SMOTE 0.9323 0.8636 0.8142 0.8909 0.9904 0.7500 0.9463 0.9667 0.9833 0.9370 0.9414 0.8414 

NT SMOTE 0.9197 0.8633 0.8150 0.8864 0.9890 0.7583 0.9525 0.9567 0.9824 0.9241 0.9291 0.8327 

Lee 0.8970 0.8650 0.8191 0.9000 0.9897 0.8038 0.9240 0.9544 0.9853 0.9256 0.9362 0.8385 

 

Table 8. AUC Results of SMOTE Variants in LightGBM Classification 
 CM1 JM1 KC1 KC3 MC1 MC2 MW1 PC1 PC2 PC3 PC4 PC5 

Without 

SMOTE 

NaN 0.6941 0.6771 0.8136 0.8915 0.7566 NaN 0.8624 NaN 0.8023 0.9165 0.7773 

SMOTE IPF 0.9829 0.9223 0.8944 0.9661 0.9993 0.7957 0.9892 0.9919 0.9983 0.9824 0.9910 0.9234 

Kernel 

ADASYN 

0.9768 0.9218 0.8944 0.9696 0.9993 0.8019 0.9888 0.9948 0.9981 0.9843 0.9912 0.9227 

MOT2LD 0.9783 0.9218 0.8826 0.9665 0.9971 0.8219 0.9713 0.9869 0.9985 0.9819 0.9899 0.9165 

OUPS 0.9416 0.9192 0.8728 0.9271 0.9990 0.7649 0.9616 0.9840 0.9973 0.9748 0.9832 0.9110 

SMOTE D 0.9788 0.9181 0.8885 0.9582 0.9967 0.8594 0.9799 0.9897 0.9993 0.9764 0.9873 0.9193 

CURE 

SMOTE 

0.9701 0.9188 0.8851 0.9387 0.9973 0.8321 0.9759 0.9892 0.9979 0.9753 0.9877 0.9193 

Edge Det 

SMOTE 

0.9780 0.9218 0.9031 0.9548 0.9988 0.8194 0.9931 0.9958 0.9986 0.9823 0.9901 0.9216 

CBSO 0.9841 0.9194 0.8779 0.9743 0.9992 0.8238 0.9871 0.9920 0.9993 0.9832 0.9896 0.9183 

Assembled 

SMOTE 

0.9745 0.9207 0.8994 0.9502 0.9991 0.8617 0.9878 0.9934 0.9982 0.9835 0.9905 0.9265 

SDSMOTE 0.9833 0.9233 0.9018 0.9727 0.9992 0.7942 0.9912 0.9938 0.9985 0.9858 0.9907 0.9211 

DSMOTE 0.9778 0.9353 0.9211 0.9344 0.9968 0.9045 0.9559 0.9869 0.9981 0.9799 0.9901 0.9414 

G SMOTE 0.9841 0.9221 0.8946 0.9600 0.9985 0.8288 0.9856 0.9944 0.9990 0.9837 0.9908 0.9277 

NT SMOTE 0.9760 0.9203 0.8896 0.9596 0.9982 0.8306 0.9789 0.9902 0.9983 0.9801 0.9887 0.9201 

Lee 0.9640 0.9213 0.8901 0.9526 0.9973 0.8739 0.9741 0.9881 0.9984 0.9787 0.9878 0.9212 

 

Table 9. G-mean Results of SMOTE Variants in LightGBM Classification 
 CM1 JM1 KC1 KC3 MC1 MC2 MW1 PC1 PC2 PC3 PC4 PC5 

Without 

SMOTE 

NaN 0.3691 0.5224 0.7626 0.5055 0.6272 NaN 0.4281 NaN 0.3972 0.6610 0.5851 

SMOTE IPF 0.9529 0.8324 0.8158 0.9187 0.9913 0.6847 0.9540 0.9724 0.9886 0.9369 0.9490 0.8405 

Kernel 

ADASYN 

0.9555 0.8288 0.8209 0.9112 0.9925 0.7739 0.9459 0.9719 0.9885 0.9334 0.9555 0.8412 

MOT2LD 0.9269 0.8344 0.8056 0.9158 0.9872 0.7550 0.9419 0.9487 0.9861 0.9475 0.9496 0.8399 

OUPS 0.8746 0.8231 0.7884 0.8702 0.9850 0.6596 0.8829 0.9415 0.9804 0.9084 0.9263 0.8214 

SMOTE D 0.9278 0.8242 0.8135 0.8835 0.9869 0.7595 0.9238 0.9522 0.9865 0.9201 0.9286 0.8245 

CURE 

SMOTE 

0.9180 0.8230 0.8059 0.8713 0.9852 0.7486 0.9464 0.9407 0.9856 0.9083 0.9233 0.8179 

Edge Det 

SMOTE 

0.9476 0.8317 0.8203 0.8950 0.9906 0.7559 0.9390 0.9694 0.9896 0.9350 0.9486 0.8413 

CBSO 0.9441 0.8279 0.7964 0.8956 0.9910 0.7446 0.9356 0.9563 0.9905 0.9320 0.9502 0.8360 

Assembled 

SMOTE 

0.9518 0.8308 0.8241 0.8673 0.9921 0.8366 0.9509 0.9690 0.9871 0.9405 0.9550 0.8394 

SDSMOTE 0.9453 0.8324 0.8323 0.8936 0.9915 0.7689 0.9590 0.9703 0.9861 0.9412 0.9577 0.8394 

DSMOTE 0.8993 0.8366 0.8353 0.8499 0.9867 0.7889 0.9193 0.9434 0.9829 0.9160 0.9455 0.8470 

G SMOTE 0.9441 0.8320 0.8117 0.8894 0.9908 0.7469 0.9509 0.9668 0.9836 0.9377 0.9456 0.8426 

NT SMOTE 0.9273 0.8280 0.8081 0.8705 0.9870 0.7511 0.9506 0.9495 0.9810 0.9196 0.9306 0.8298 

Lee 0.8853 0.8357 0.8120 0.8917 0.9890 0.7898 0.9242 0.9445 0.9855 0.9267 0.9397 0.8430 

 

3.3. Classification with Gradient Boosting 

The software defect prediction model with the Gradient Boosting algorithm was measured, and the results 

are presented in Table 10, Table 11, and Table 12. Table 10 displays the accuracy results, Table 11 presents 
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the AUC (Area Under the Curve), and Table 12 shows the G-mean results. Based on the results of the SMOTE 

Variants model test using the Gradient Boosting algorithm in Table 10, Table 11, and Table 12. DSMOTE 

achieved the highest accuracy with a score of 0.9893 on the MC1 dataset. This excellent performance 

demonstrates the effectiveness of DSMOTE in addressing class imbalance issues within the MC1 dataset. For 

the PC2 dataset, CBSO achieved the highest AUC value of 0.9990, indicating its ability to distinguish between 

positive and negative classes effectively. Additionally, the ADAYSN Kernel had the best G-mean score of 

0.9902 on the MC1 dataset, highlighting its effectiveness in balancing precision and recall. It is important to 

note that pairs without SMOTE in datasets CM1, MW1, and PC2 exhibit the lowest AUC and G-mean values, 

denoted by NaN, suggesting that these datasets may require alternative strategies to address class imbalance 

effectively. In Fig. 2, the accuracy values of different models are displayed. The highest accuracy is achieved 

by the DSMOTE and gradient boosting models, with a value of 0.9161, while the lowest accuracy is attained 

by the models Without SMOTE and Gradient Boosting, with a value of 0.6696. This significant difference in 

accuracy highlights the crucial role of SMOTE in addressing class imbalance and improving the overall 

performance of machine learning models. The difference between the two values is a substantial 36.82%, 

emphasizing the significant impact that SMOTE, especially when combined with gradient boosting, can have 

on model accuracy. The results presented in Fig. 3 show that using SMOTE for class imbalance correction 

significantly improved the AUC. The best-performing combination was using DSMOTE with the Catboost 

algorithm, which achieved the highest AUC of 0.9637. On the other hand, the model trained without SMOTE 

and using LightGBM resulted in the lowest AUC score of 0.5993. This represents a substantial improvement 

of 60.82% and highlights the effectiveness of using SMOTE to address class imbalance and enhance the overall 

performance of machine learning models for software defect prediction. 

 

Table 10. Accuracy Results of SMOTE Variants in Gradient Boosting Classification 
 CM1 JM1 KC1 KC3 MC1 MC2 MW1 PC1 PC2 PC3 PC4 PC5 

Without 

SMOTE 
0.8415 0.7900 0.7453 0.4423 0.9792 0.7944 0.8480 0.9088 0.9693 0.8633 0.8933 0.7611 

SMOTE IPF 0.9272 0.8315 0.7969 0.9091 0.9882 0.8038 0.9432 0.9467 0.9794 0.9166 0.9401 0.8201 

Kernel 

ADASYN 

0.9271 0.8376 0.7969 0.8909 0.9882 0.8106 0.9465 0.9522 0.9814 0.9180 0.9375 0.8206 

MOT2LD 0.9002 0.8421 0.8097 0.9195 0.9882 0.8573 0.9178 0.9495 0.9871 0.9219 0.9373 0.8293 

OUPS 0.8719 0.8460 0.7837 0.8818 0.9746 0.7750 0.8992 0.9278 0.9569 0.9044 0.9227 0.8149 

SMOTE D 0.9026 0.8655 0.8149 0.8879 0.9875 0.8205 0.9239 0.9471 0.9823 0.9240 0.9371 0.8341 

CURE 

SMOTE 

0.9020 0.8658 0.8208 0.8727 0.9882 0.7568 0.9496 0.9478 0.9804 0.9234 0.9311 0.8362 

Edge Det 

SMOTE 

0.9397 0.8381 0.8085 0.8955 0.9842 0.7932 0.9340 0.9511 0.9794 0.9173 0.9336 0.8172 

CBSO 0.9272 0.8487 0.7912 0.9000 0.9827 0.8212 0.9148 0.9478 0.9843 0.9120 0.9388 0.8160 

Assembled 

SMOTE 

0.9195 0.8384 0.8134 0.8864 0.9864 0.8394 0.9337 0.9489 0.9794 0.9234 0.9414 0.8166 

SDSMOTE 0.9347 0.8400 0.7994 0.8773 0.9867 0.7667 0.9527 0.9467 0.9804 0.9233 0.9407 0.8270 

DSMOTE 0.9322 0.8789 0.8536 0.8773 0.9893 0.8659 0.9245 0.9511 0.9833 0.9317 0.9459 0.8593 

G SMOTE 0.9272 0.8402 0.8043 0.9136 0.9882 0.8303 0.9147 0.9533 0.9794 0.9249 0.9420 0.8241 

NT SMOTE 0.9246 0.8524 0.8125 0.8727 0.9886 0.7939 0.9494 0.9456 0.9775 0.9150 0.9356 0.8270 

Lee 0.8994 0.8436 0.8241 0.9136 0.9890 0.8030 0.9335 0.9456 0.9814 0.9234 0.9375 0.8247 

 

Table 11. AUC Results of SMOTE Variants in Gradient Boosting Classification 
 CM1 JM1 KC1 KC3 MC1 MC2 MW1 PC1 PC2 PC3 PC4 PC5 

Without 

SMOTE 

NaN 0.7036 0.6774 0.7627 0.8892 0.8421 NaN 0.8129 NaN 0.8091 0.9239 0.7723 

SMOTE IPF 0.9784 0.9038 0.8705 0.9621 0.9985 0.8695 0.9831 0.9891 0.9982 0.9749 0.9889 0.8967 

Kernel 

ADASYN 

0.9732 0.9063 0.8647 0.9643 0.9985 0.8569 0.9841 0.9911 0.9989 0.9763 0.9875 0.9016 

MOT2LD 0.9725 0.9070 0.8718 0.9637 0.9974 0.8881 0.9669 0.9864 0.9980 0.9768 0.9902 0.9037 

OUPS 0.9291 0.9091 0.8480 0.9387 0.9977 0.7662 0.9627 0.9800 0.9957 0.9702 0.9834 0.8966 

SMOTE D 0.9711 0.9190 0.8801 0.9468 0.9974 0.8732 0.9736 0.9867 0.9988 0.9766 0.9872 0.9136 

CURE 

SMOTE 

0.9665 0.9175 0.8798 0.9436 0.9978 0.8299 0.9801 0.9860 0.9980 0.9758 0.9871 0.9131 

Edge Det 

SMOTE 

0.9742 0.9050 0.8732 0.9402 0.9977 0.8304 0.9849 0.9894 0.9983 0.9770 0.9868 0.8951 

CBSO 0.9810 0.9107 0.8640 0.9565 0.9983 0.8819 0.9788 0.9858 0.9990 0.9747 0.9869 0.9030 

Assembled 

SMOTE 

0.9789 0.9063 0.8708 0.9435 0.9987 0.8762 0.9822 0.9873 0.9985 0.9757 0.9872 0.9018 

SDSMOTE 0.9800 0.9049 0.8690 0.9586 0.9988 0.8435 0.9861 0.9894 0.9990 0.9776 0.9884 0.9010 

DSMOTE 0.9793 0.9370 0.9121 0.9353 0.9970 0.9219 0.9651 0.9837 0.9980 0.9816 0.9908 0.9390 

G SMOTE 0.9795 0.9076 0.8773 0.9476 0.9984 0.8658 0.9749 0.9919 0.9987 0.9787 0.9896 0.9038 

NT SMOTE 0.9759 0.9132 0.8745 0.9528 0.9982 0.8486 0.9733 0.9883 0.9978 0.9781 0.9885 0.9033 

Lee 0.9636 0.9062 0.8691 0.9533 0.9981 0.8519 0.9706 0.9856 0.9980 0.9738 0.9883 0.9046 
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Table 12. G-mean Results of SMOTE Variants in Gradient Boosting Classification 
 CM1 JM1 KC1 KC3 MC1 MC2 MW1 PC1 PC2 PC3 PC4 PC5 

Without 

SMOTE 

NaN 0.3191 0.4231 0.7852 0.5632 0.7148 NaN 0.4619 NaN 0.3841 0.6558 0.5462 

SMOTE IPF 0.9451 0.8067 0.7810 0.8976 0.9899 0.8006 0.9486 0.9570 0.9875 0.9283 0.9535 0.8227 

Kernel 

ADASYN 

0.9446 0.8132 0.7798 0.8984 0.9902 0.8140 0.9536 0.9611 0.9875 0.9272 0.9499 0.8285 

MOT2LD 0.9060 0.8253 0.7825 0.9206 0.9888 0.8235 0.9206 0.9459 0.9851 0.9290 0.9426 0.8281 

OUPS 0.8638 0.8143 0.7598 0.8786 0.9734 0.7632 0.8927 0.9331 0.9657 0.9075 0.9346 0.8143 

SMOTE D 0.9076 0.8165 0.7848 0.8892 0.9859 0.7724 0.9111 0.9418 0.9839 0.9164 0.9325 0.8052 

CURE 

SMOTE 

0.8941 0.8193 0.7744 0.8604 0.9851 0.7403 0.9465 0.9377 0.9821 0.9111 0.9220 0.8030 

Edge Det 

SMOTE 

0.9606 0.8148 0.7842 0.8923 0.9868 0.7732 0.9447 0.9611 0.9866 0.9260 0.9465 0.8129 

CBSO 0.9400 0.8192 0.7753 0.9112 0.9833 0.7947 0.9247 0.9527 0.9900 0.9177 0.9507 0.8166 

Assembled 

SMOTE 

0.9371 0.8154 0.7955 0.8981 0.9899 0.8099 0.9307 0.9600 0.9846 0.9326 0.9530 0.8175 

SDSMOTE 0.9452 0.8147 0.7768 0.8793 0.9890 0.7545 0.9522 0.9593 0.9870 0.9297 0.9519 0.8244 

DSMOTE 0.9174 0.8321 0.8149 0.8694 0.9860 0.8439 0.9243 0.9411 0.9835 0.9180 0.9349 0.8420 

G SMOTE 0.9340 0.8175 0.7855 0.9052 0.9896 0.8281 0.9192 0.9601 0.9827 0.9345 0.9521 0.8268 

NT SMOTE 0.9254 0.8277 0.7914 0.8620 0.9867 0.7705 0.9409 0.9467 0.9766 0.9146 0.9374 0.8241 

Lee 0.8940 0.8239 0.8114 0.9025 0.9902 0.7640 0.9255 0.9376 0.9826 0.9266 0.9416 0.8237 

 

In Fig. 4, the average G-means value differs significantly between the Without SMOTE and SMOTE 

models, highlighting the effectiveness of SMOTE in addressing class imbalance. The highest G-mean value of 

0.9154 is achieved by the ADAYSN Kernel and Catboost pair, indicating its suitability for handling imbalanced 

datasets. Conversely, the lowest G-mean value is 0.3691, observed in the Without SMOTE and Catboost pair, 

emphasizing the importance of incorporating SMOTE. The difference between the two values is a staggering 

147.96%, emphasizing the significant impact of SMOTE on model performance. 

 

 
Fig. 2. Comparison of Average Accuracy  

 

 
Fig. 3. Comparison of Average AUC 
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Based on the research results, it is crucial to use SMOTE to address unbalanced datasets. This is supported 

by the fact that several datasets, including CM1, MW1, and PC2, resulted in a value of NaN when SMOTE 

was not used. NaN (Not a Number) is a specific undefined value for numeric data types in computing. The 

occurrence of NaN in the dataset is likely due to class imbalance. Additionally, the choice of k-fold cross-

validation parameters, particularly the number of folds (k), can potentially influence the occurrence of NaN 

values and, consequently, impact algorithm performance evaluation.During our research, we discovered a NaN 

value in the data set, which prompted us to investigate the issue further. As a result, we carried out a study to 

examine the impact of different K-fold values on the CM1, MW1, and PC2 datasets. The results of our 

experiments show that using various K-fold values improve performance metrics, as shown in Table 13. 

However, after careful consideration, we decided to use the 10-fold cross-validation. This aligns with previous 

research [23]-[25] highlighting the advantages of 10-fold cross-validation in minimizing bias and ensuring a 

more trustworthy evaluation of model generalizations. Comparison of model without SMOTE performance 

with different K-fold values shown in Table 13. 

 

 
Fig. 4. Comparison of Average G-mean 

 

Table 13. Comparison of Model Without SMOTE Performance with Different K-fold Values 

Algorithm 
K-fold Value CM1 MW1 PC2 

AUC G-mean AUC G-mean AUC G-mean 

Catboost 
K=3 0.8248 0.1454 0.6808 0.4368 0.9034 0.000 

K=5 0.7926 0.1408 0.6902 0.2838 0.9022 0.000 

LightGBM 
K=3 0.8158 0.2045 0.7023 0.4253 0.8726 0.000 

K=5 0.8429 0.3634 0.7068 0.3913 0.8942 0.000 

Gradient Boosting 
K=3 0.8281 0.4491 0,6225 0.4397 0.8877 0.000 

K=5 0.7890 0.3440 0.6779 0.3832 0.9047 0.000 

 

This study aims to compare the performance of the proposed model with models from previous studies, 

as presented in Table 14. However, direct comparison of the results with  [13], [18], [19] studies is limited due 

to differences in the evaluation matrices. Therefore, we have chosen to compare our research to studies [14]-

[17] based on their AUC values and methodological similarity to our study. We selected the studies with the 

highest AUC values to represent the best performance of the SMOTE Variant in those studies. 

The analysis conducted in Table 14 indicates that the proposed method, which combines SMOTE Variants 

and Boosting Algorithms, can potentially enhance binary classification performance. This is supported by the 

AUC value, which is superior to other research methods. However, the performance is not consistently better 

than other methods, such as OUPS method, and this method's potential appears promising. It is worth noting 

that factors such as hyperparameter settings, data characteristics, and the choice of boosting algorithm can 

affect performance. 

The proposed software defect prediction model offers many benefits to improve software quality and the 

efficiency of the development process. The model can help developers predict the likelihood of defects in 

software modules, enable early detection, and prioritize which modules should be tested first. The results of 

this study can serve as a foundation for further research and are expected to encourage research in this field to 

grow and produce better solutions. 
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Table 14. Comparison of AUC Results with Previous Studies 

Research Algorithm AUC 

[14] CURE SMOTE + SVM 0.9068 

 GSMOTE + SVM 0.9062 

 LEE + DT 0.8834 

 Assembled SMOTE+ DT 0.8834 

 SMOTE IPF + DT  0.8828 

[15] OUPS 0.97 

[16] GSMOTE 0.8857 

 SDSMOTE 0.8823 

[17] Kernel ADASYN 0.7902 

 

Our Research  CURE SMOTE + Catboost 0.9537 

 GSMOTE + Catboost 0.9579 

 LEE + Catboost 0.9557 

 Assembled SMOTE+ Catboost 0.9583 

 SMOTE IPF + Catboost  0.9593 

 OUPS + LightGBM 0.9364 

 GSMOTE + Catboost  0.9579 

 SDSMOTE + Catboost 0.9574 

 

4. CONCLUSION 

The research suggests that the Boosting model, when used with various variations of SMOTE, can predict 

software defects in the NASA MDP D'' dataset. The study evaluates performance using accuracy, AUC, and 

G-mean metrics. It concludes that using SMOTE Variants with the Boosting algorithm can enhance 

classification performance for software defect prediction. The combination of DSMOTE with Gradient 

Boosting achieved the highest average accuracy of 0.9161. Additionally, DSMOTE and Catboost had the 

highest average AUC value of 0.9637, while Kernel ADASYN and Catboost showed the best ability to achieve 

an average G-mean value of 0.9154. 

The study suggests that SMOTE Variants and Algorithm Boosting can effectively enhance software 

defect prediction. However, further investigation is required to address certain limitations. The results reveal a 

concerning presence of NaN values for AUC and G-mean across multiple boosting algorithms on datasets 

CM1, MW1, and PC2. This issue may be due to the 10-fold cross-validation methodology, where data 

stratification was not adequately ensured during fold creation. As a result, some folds may have imbalanced 

class distributions, leading to models encountering unseen data during training and generating undefined 

metrics (NaN). 

Future research should focus on developing new classification methods, testing newer variations of 

SMOTE, and evaluating model performance on various datasets. This could involve exploring different 

techniques for handling class imbalance, such as oversampling minority classes or undersampling majority 

classes and assessing the effectiveness of these methods on a range of datasets. Additionally, further research 

can consider other factors, such as the value of k in cross-validation or the percentage distribution of datasets, 

to better understand how these variables impact model performance. 
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