
Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI)

Vol. 10, No. 2, June 2024, pp. 201-216

ISSN: 2338-3070, DOI: 10.26555/jiteki.v10i2.28521 201

Journal homepage: http://journal.uad.ac.id/index.php/JITEKI Email: jiteki@ee.uad.ac.id

Effect of SMOTE Variants on Software Defect Prediction

Classification Based on Boosting Algorithm

Rahmina Ulfah Aflaha, Rudy Herteno, Mohammad Reza Faisal, Friska Abadi, Setyo Wahyu Saputro
Computer Science Department, Lambung Mangkurat University, Banjarbaru, Indonesia

ARTICLE INFO ABSTRACT

Article history:

Received March 08, 2024

Revised May 15, 2024

Published June 21, 2024

 Detecting software defects early on is critical for avoiding significant

financial losses. However, building accurate software defect prediction

models can be challenging due to class imbalance, where the data for

defective modules is much less than for standard modules. This research

addresses this issue using the imbalanced dataset NASA MDP. To address

this issue, researchers have proposed new methods that combine data level

balancing approaches with 14 variations of the SMOTE algorithm to increase

the amount of defective module data. An algorithm-level approach with three

boosting algorithms, Catboost, LightGBM, and Gradient Boosting, is applied

to classify modules as defective or non-defective. These methods aim to

improve the accuracy of software defect prediction. The results show that this

new method can produce a more accurate classification than previous studies.

The DSMOTE and Gradient Boosting pair with 0.9161 has the highest

average accuracy (0.9161). The DSMOTE and Catboost model achieved the

highest average AUC value (0.9637). The ADASYN kernel and Catboost

showed the best ability to perform the average G-mean value (0.9154). The

research contribution to software defect prediction involves developing new

techniques and evaluating their effectiveness in addressing class imbalance.

Keywords:

Software Defect Prediction;

Imbalance;

SMOTE Variants;
Boosting

This work is licensed under a Creative Commons Attribution-Share Alike 4.0

Corresponding Author:

Rudy Herteno, Computer Science Department, Universitas Lambung Mangkurat, Banjarbaru, Indonesia

Email: rudy.herteno@ulm.ac.id

1. INTRODUCTION

In this digital age, software is becoming essential in various aspects of human life in the 21st century [1].

A minor defect in any software can lead to software failure. According to Huang & Strigini, in 2018, the cost

of finding and fixing defects worldwide was estimated to be trillions of dollars [2]. Defect prevention is critical

because once defects are created in the code, it is difficult to ensure that all such defects will be found and

removed through testing. Therefore, the prediction of problematic modules at an early stage is more beneficial

and also reduces the overall cost of the software [3]. Software defect prediction uses machine learning

classifiers to identify defect-prone software modules [4]. By identifying problematic modules early, developers

can focus on them during testing and reduce the chances of undetected defects.

However, building an effective defect prediction model can be complicated due to the problem of

imbalanced data. This occurs when the amount of data in two different classes in a dataset is imbalanced, where

there is a significant difference between the amount of data in the majority and minority classes. Meng and Li

revealed that the majority class has significantly more data, while the minority class has significantly less data

[5]. This imbalance can disrupt the learning process of the model and result in inaccurate predictions [6]. There

are several solutions to overcome the problem of class imbalance, which are divided into three types of

approaches: data level, algorithm level and hybrid [7]. At the data level, oversampling approaches are widely

used to overcome class imbalance [8], and ensemble learning can be used at the algorithm level to improve

model performance. In this study using 3 boosting algorithms namely Catboost, LightGBM, and Gradient

Boosting.

file:///C:/Users/USER/Downloads/10.26555/jiteki.v10i2.28521
http://journal.uad.ac.id/index.php/JITEKI
http://jiteki@ee.uad.ac.id
https://creativecommons.org/licenses/by-sa/4.0/deed.id
https://creativecommons.org/licenses/by-sa/4.0/deed.id
mailto:rudy.herteno@ulm.ac.id

202 Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI) ISSN: 2338-3070

 Vol. 10, No. 2, June 2024, pp. 201-216

Effect of SMOTE Variants on Software Defect Prediction Classification Based on Boosting Algorithm (Rahmina Ulfah

Aflaha)

Vardhan et al. found that Catboost is very effective in detecting software bugs. The study compared

Catboost with other classification algorithms using the NASA MDP dataset. Catboost produced higher

accuracy, with scores of 0.82 on CM1, 0.72 on JM1, 0.84 on KC2, and 0.87 on PC3. These results indicate that

Catboost can help improve software quality [9]. Based on the research of Fahimuzzman Sohan et al. showed

that Gradient Boosting is a very effective method for handling imbalanced datasets. This study uses the

SeaCraft dataset, Gradient Boosting was compared with several other classification methods. The results show

that Gradient Boosting produces the highest accuracy, which is 0.95 on imbalanced data [10]. In research [11],

focused on predicting software defects using three classification models: Gradient Boosting LightGBM,

XGBoost, and CatBoost. This research uses datasets CM1, JM1, PC1, KC1, and KC2. The results showed that

LightGBM with GridSearchCV library gave the most dominant performance (98%) compared to other

algorithms.

Research by Malhotra and Jain found that using a resampling technique before applying the Boosting

method can help improve prediction models. One of the resampling techniques that can be used to address an

unbalanced dataset is SMOTE [12]. Although SMOTE is commonly used in software defect prediction

research, there is still relatively little research on its variants. In fact, SMOTE Variants can provide a wider

range of solutions to overcome data imbalance problems in machine. Hassanat et al. evaluated and ranked over

70 over-sampling methods on three imbalanced real-world datasets. The MOT2LD (Rank 8), CURE SMOTE

(Rank 9), Edge Det SMOTE (Rank 17), SDSMOTE (Rank 16), DSMOTE (Rank 1), and NT SMOTE (Rank

11) methods showed superior performance to SMOTE (Rank 24) based on the average error value [13]. Kovács

evaluated the performance of several oversampling methods in improving classification performance. In SVM,

GSMOTE, and CE classification, SMOTE showed higher AUC values than SMOTE, 0.9062 and 0.9056

compared to 0.8999. In Decision Tree classification, SMOTE IPF, Assembled SMOTE, and Lee also showed

higher AUC values, 0.8828, 0.8834, and 0.8883, compared to 0.8809 in SMOTE. The results of this study

show that oversampling can help improve classification performance, and some oversampling methods proved

to be more effective than SMOTE [14]. Zhai et al. [15] proposed an OUPS oversampling method that uses an

enhanced GAN to improve classification performance on imbalanced numerical datasets. The results show that

OUPS is more effective than SMOTE in improving AUC.

 According to the research on [16], DTS2, G-SMOTE, Edge Det SMOTE, and SDSMOTE datasets

produce better results than SMOTE concerning AUC. The study revealed that G-SMOTE achieved an AUC

value of 0.8857, while Edge Det SMOTE obtained an AUC value of 0.8798, and SDSMOTE obtained an AUC

value of 0.8823On the other hand, SMOTE achieved an AUC value of only 0.8779. Ding et al. conducted

research on state-of-the-art sampling techniques across nine image classification datasets, each with varying

levels of imbalance, and the ADASYN Kernel produced higher AUC than SMOTE on several datasets,

including Lung, Colon, Glioma, Haberman, Vehicle, CMC, Balance, and Zooscan [17]. Dudjak and Martinović

evaluated the performance of several oversampling methods and classification algorithms. It was found that

SMOTE D was the best oversampled for 5-NN classification, with an F1 score of 4.175, outperforming

SMOTE with a score of 5.275 [18]. Research [19] shows the superiority of the CBSO method over SMOTE in

handling unbalanced data. CBSO achieved better performance on the Glass, Yeast, and Pima datasets, with G-

mean of 0.9536, 0.7683, and 0.7367, compared to SMOTE's 0.9412, 0.7298, and 0.7170. This significant

increase in G-mean suggests that CBSOs are more effective in addressing minority classes in the data, resulting

in more accurate classification models.

According to researches [13]-[19] study SMOTE Variants have performed better than the original

SMOTE. However, using SMOTE Variants for software defect prediction with the NASA MDP dataset still

requires further research. Another research study [12] suggests boosting after SMOTE can enhance model

performance. Research [9]-[11] have demonstrated that boosting algorithms like CatBoost, LightGBM, and

Gradient Boosting are highly effective in software defect prediction and produce accurate results.

The aim of this study is to identify the best combination of SMOTE and its Variants to enhance the

performance of Catboost, LightGBM, and Gradient Boosting algorithms in predicting software defects,

especially in cases where data imbalance is a problem. This research introduces a novel approach to software

defect prediction that integrates 14 different variations of SMOTE with three boosting algorithms. This method

is expected to address the issue of imbalanced datasets and generate more accurate classifications than previous

research.

2. METHODS

The research flow carried out in the study can be seen Fig. 1. The first step is to process the initial data

by converting categorical variables into numerical values. Then, the data is split into training and test data. To

address any imbalances in the data, we apply SMOTE Variants before utilizing boosting algorithms such as

http://issn.lipi.go.id/issn.cgi?daftar&1368096553&1&&

ISSN: 2338-3070 Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI) 203

 Vol. 10, No. 2, June 2024, pp. 201-216

Effect of SMOTE Variants on Software Defect Prediction Classification Based on Boosting Algorithm (Rahmina Ulfah

Aflaha)

Catboost, LightGBM, and Gradient Boosting. To ensure optimal performance of the machine learning model

in various scenarios, we evaluate its performance using ten cross-validation and various evaluation metrics

such as accuracy, AUC, and g-mean.

Fig. 1. Research Flow

2.1. Data Collection

NASA MDP (Metrics Data Program) is a public data repository widely used in software defect prediction

research [20]. The dataset used in this study is the NASA MDP with version D” or a cleaned data version. It

comprises datasets from 12 projects: CM1, JM1, KC1, KC3, MC1, MC2, MW1, PC1, PC2, PC3, PC4, and

PC5. Table 1 contains details from the NASA MDP D dataset.

Table 1. NASA MDP D"

Dataset Attributes Module Defective Non-Defective Defective (%)

CM1 38 327 42 285 12.8

JM1 22 7720 1,612 6,108 20.8

KC1 22 1162 294 868 25.3

KC3 40 194 36 158 18.5

MC1 39 1952 36 1916 1.8

MC2 40 124 44 80 35.4

MW1 38 250 25 225 10

PC1 38 679 55 624 8.1

PC2 37 722 16 706 2.2

PC3 38 1053 130 923 12.3

PC4 38 1270 176 1094 13.8

PC5 39 1694 458 1236 27.0

2.2. Prepocessing

Preprocessing is essential for maximizing the accuracy of machine learning models fed with datasets [21].

When dealing with ordinal categorical features, where order matters, label encoding is the preferred technique

[22]. This is exemplified by the "target class" attribute with nominal Boolean values ("Y" for defective and

"N" for non-defective modules). Label encoding converts these qualitative labels ("Y" and "N") into numerical

values in Table 2. This transformation enhances model comprehension and processing, ultimately improving

training and evaluation efficiency.

Table 2. Lable Encoding

Label Encoding Description

1 Defective (Y)

0 Non-Defective (N)

http://issn.lipi.go.id/issn.cgi?daftar&1368096553&1&&

204 Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI) ISSN: 2338-3070

 Vol. 10, No. 2, June 2024, pp. 201-216

Effect of SMOTE Variants on Software Defect Prediction Classification Based on Boosting Algorithm (Rahmina Ulfah

Aflaha)

2.3. Data Splitting

The research data is divided into two parts: training data and testing data. This data separation is a

common technique in data science and machine learning to objectively evaluate models. The research data was

split into two parts, with a ratio of 70% for training data and 30% for test data. This ratio was chosen based on

research [23] which demonstrated that the 70:30 ratio resulted in the best model performance compared to

other ratios. To evaluate model performance, 10-fold cross-validation is used. This method divides the training

data into ten subsets, and the model is trained and tested on nine subsets in turn. The average of the evaluation

metrics from these ten iterations is used to estimate the model's performance on unseen data. The selection of

10-fold cross-validation was based on [23]-[25] studies showing that k=10 resulted in more accurate

estimations, reduced bias, and overfitting.

2.4. SMOTE Variants

SMOTE (Synthetic Minority Oversampling Technique) is a resampling technique that generates new

samples to increase the minority class by creating synthetic instances along the line segments [27]. Over the

past decade, many variants for SMOTE have been proposed. To handle the issue of data class imbalance, this

study utilizes 14 specifically selected SMOTE Variants. These variants were chosen after performing a

comparative evaluation of 85 variants on large, unbalanced datasets, as referenced in [14]. SMOTE Variants

used in this study is available in a Python package that can be accessed on the documentation page http://smote-

variants.readthedocs.io.

a. SMOTE IPF consists of SMOTE and IPF (Iterative Filter Partition). SMOTE-IPF improves the

oversampling process in SMOTE by removing noisy data points from the majority class to enhance model

performance in imbalanced classification tasks [28].

b. Kernel ADASYN uses a kernel-based adaptive synthetic over-sampling approach to address data

imbalance. These techniques rely on local information rather than the overall data distribution [29].

c. MOT2LD is a method used for taking measurements by determining the Local Density dataset in a Low

Dimensional Space. Initially, the dataset is represented in a smaller dimension, meaning feature selection

is done to find the best combination. The results of the representation are obtained by clustering the values

of Local Minority Density and Local Majority Count, which indicate the required levels of samples to create

new synthetic data [30].

d. OUPS is an oversampling technique that uses propensity score matching to select neighbors and generates

synthetic samples through SMOTE [31].

e. SMOTE D algorithm selects minority instances based on their deviation of distances. This algorithm has

the least impact on the performance of the majority class and it statistically outperforms other algorithms

[18].

f. CURE SMOTE (Combination of Clustering Using Representatives Synthetic Minority Oversampling

Technique) Experiments on the UCI imbalanced data show that the original Synthetic Minority Over-

sampling Technique is effectively enhanced by the use of the combination of clustering using representative

algorithm [32]. CURE-SMOTE uses the hierarchical clustering algorithm CURE to clear outlier data before

applying SMOTE [33].

g. Edge Det SMOTE proposed edge detection algorithm Egde-Det, this method generates synthetic data based

on the sample weight calculated by the overall magnitude of gradient.

h. CBSO is a cluster-based synthetic oversampling algorithm that effectively deals with imbalanced data

problems. It has been used widely in data analysis and has proven effective with synthetic oversampling

techniques like SMOTE and ADASYN, which use a KNN approach. The algorithm can also reduce the

impact of imbalanced data on classification by oversampling only the minority examples near the

borderline [34].

i. Assembled SMOTE is a minority oversampling technique that connects minority samples near the decision

boundary with minority samples farther away, thereby improving data diversity and machine learning

model performance in handling imbalanced data [35].

j. SDSMOTE is a method used to address the issue of imbalanced datasets with a significantly smaller

minority class, often resulting in inaccurate models. This method creates synthetic minority class samples

to tackle the problem. Unlike SMOTE, which randomly selects neighbors, SDSMOTE views the data as a

solid graph and ensures that the overall distribution remains stable by carefully positioning new samples.

This leads to more effective oversampling without compromising the integrity of the original data [36].

k. DSMOTE (Diversity and Separable Metrics in Over-Sampling Technique) method that improves the

accuracy. Anomalous samples are removed from the negative class. The top three samples are then

considered based on a criteria and synthetic data is generated based on these samples [37].

http://issn.lipi.go.id/issn.cgi?daftar&1368096553&1&&
http://smote-variants.readthedocs.io/
http://smote-variants.readthedocs.io/

ISSN: 2338-3070 Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI) 205

 Vol. 10, No. 2, June 2024, pp. 201-216

Effect of SMOTE Variants on Software Defect Prediction Classification Based on Boosting Algorithm (Rahmina Ulfah

Aflaha)

l. GSMOTE employs bootstrapping as part of its hybrid sampling technique, effectively addressing the

challenge of highly skewed data distributions [38].

m. NT SMOTE is an up-sampling approach that utilizes the neighborhood triangular synthetic minority over-

sampling technique to address the issue of unsatisfactory results in imbalanced risk prediction for minority

class samples [39].

n. Lee generates a new synthetic observation with SMOTE, and includes a step to assess whether the

observation is noise. For example, when 𝑘 is 5 and the rejection level is 3, the resulting synthetic

observations are removed for C with three or more of the five surrounding observations. However, in the

case of F, with two or less majority class observations, the synthetic observations are maintained [40].

2.5. Algorithm Boosting

Boosting, an algorithm-level approach used in this research is Catboost, LightGBM, and Gradient

Boosting. CatBoost is an algorithm was developed by Yan dex researchers for gradient boosting on decision

trees, which can handle categorical features in the training phase [41]. In the decision tree, the label means will

also be the criterion for node splitting, also known as greedy target variable statistics, and the formula is

expressed as (1) [42]:

�̂�𝑘

𝑖
=

∑ [𝑥𝑗,𝑘 = 𝑥𝑖,𝑘]
𝑝−1
𝑗=1 . 𝛾𝑖

∑ [𝑥𝑗,𝑘 = 𝑥𝑖,𝑘]𝑛
𝑗=1

(1)

LightGBM is one of the boosting algorithms that use a "leaf-wise" algorithm to grow trees vertically.

Microsoft launched LightGBM (Light Gradient Boosting Machine) in 2017 [43]. In addition, LightGBM uses

a histogram-based method to find the best splitting candidate [44]. According to the level-wise growth strategy,

the leaves on the same layer are simultaneously split. Leaves on same layer are indiscriminately treated,

whereas they have different information gain. Information gain indicates the expected reduction in entropy

caused by splitting the nodes based on attributes (2) [45].

𝐼𝐺(𝐵, 𝑉) = ∑ −𝑝𝑑 log2 𝑝𝑑,

𝐷

𝑑=1

− ∑
|𝐵𝑣|

𝐵
𝑣∈(𝑉)

𝐸𝑛(𝐵𝑣)

(2)

where 𝑝𝑑 is the ration of 𝐵 pertaining to category 𝑑, 𝐷 is the number of categories, is the value of attribute 𝑉,

and 𝐵𝑣 is the subset of 𝐵 for which attribute has value.

Gradient Boosting is one of the ensemble machine-learning methods introduced by Friedman in 2001

[46]. Gradient Boosting is applied to regression and classification problems; this model works by giving a

certain weight to each data point [47]. Gradually, the learning process builds a model by combining several

weak prediction models, usually a decision tree [48]. The GBT (gradient boosting tree) can be defined as the

summation of 𝑛𝑛 regression-trees [49] in (3). Where every 𝑓𝑖(𝑥𝑡) is a decision tree (regression-tree).

𝐹𝑛(𝑥𝑡) = ∑ 𝑓𝑖(𝑥𝑡)

𝑛

𝑖=1

(3)

2.6. Evaluation

In Software Defect Prediction, performance assessment is usually calculated based on a confusion matrix

[50]. An example of a confusion matrix can be seen in the following Table 3. Classification results are evaluated

in terms of accuracy, AUC and G-mean. In the field of machine learning, accuracy has always been the primary

metric used to measure the performance of conventional algorithms. However, when dealing with imbalanced

datasets, where one class has significantly more samples than the others, the reliability of this metric decreases.

In such cases, the accuracy can overestimate the classifier's ability to identify the majority class [51]. Therefore,

this study has adopted more robust evaluation metrics such as AUC and G-mean to assess the performance of

the classifier [34], [50].

Table 3. Confusion Matrix

 Predictive Negative Predictive Positive

Actual Negatif True Negative (TN) False Positive (FP)

Actual Positive False Negative (FN) True Positive (TP)

http://issn.lipi.go.id/issn.cgi?daftar&1368096553&1&&

206 Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI) ISSN: 2338-3070

 Vol. 10, No. 2, June 2024, pp. 201-216

Effect of SMOTE Variants on Software Defect Prediction Classification Based on Boosting Algorithm (Rahmina Ulfah

Aflaha)

a. Accuracy is the ratio of correctly classified modules to the total number of modules. Equation (4) used to

calculate Accuracy is as follows:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

(4)

b. AUC Area Under Curve (AUC) is the percentage of area under the Receiver Operator Characteristic

(ROC) curve. Equation (5) used to calculate Accuracy is as follows:

𝐴𝑈𝐶 =

1 + 𝑇𝑃𝑟 − 𝐹𝑃𝑟

2

(5)

c. G-mean (Geometric Mean) measures central tendency that calculates the average of sensitivity and

specificity. Equation (6) used to calculate Accuracy is as follows:

 𝐺 − 𝑚𝑒𝑎𝑛 = √𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙 (6)

3. RESULTS AND DISCUSSION

This study assessed 15 classification models, each utilizing a boosting approach, specifically CatBoost,

LightGBM, and Gradient Boosting. The initial model runs without SMOTE, while the other 14 models run

with 14 different SMOTE variations. Subsequently, the accuracy, AUC, and G-mean values will be

observed for each model.

3.1. Classification with Catboost

The software defect prediction model with the Catboost algorithm was measured, and the results are

presented in Table 4, Table 5, and Table 6. Table 4 displays the accuracy results, Table 5 presents the AUC,

and Table 6 shows the G-mean results. Using SMOTE Variants in software defect prediction models has proven

more effective than Boosting models without SMOTE Variants. Higher accuracy, AUC scores, and G-

mean were observed in all datasets, and based on the test results in Table 4, Table 5, and Table 6.

Table 4. Accuracy Results of SMOTE Variants in Catboost Classification
 CM1 JM1 KC1 KC3 MC1 MC2 MW1 PC1 PC2 PC3 PC4 PC5

Without

SMOTE

0.8678 0.7946 0.7718 0.4199 0.9799 0.7042 0.8873 0.9129 0.9770 0.8553 0.8956 0.7778

SMOTE IPF 0.9347 0.8636 0.8348 0.8955 0.9908 0.8205 0.9464 0.9578 0.9804 0.9272 0.9485 0.8391

Kernel

ADASYN

0.9446 0.8626 0.8290 0.9045 0.9915 0.8295 0.9430 0.9667 0.9814 0.9264 0.9491 0.8385

MOT2LD 0.9160 0.8650 0.8215 0.9095 0.9885 0.7627 0.9375 0.9552 0.9911 0.9281 0.9466 0.8405

OUPS 0.8392 0.8590 0.7928 0.8455 0.9849 0.7409 0.8614 0.9178 0.9578 0.8976 0.9233 0.8235

SMOTE D 0.9176 0.8679 0.8271 0.8927 0.9904 0.7848 0.9241 0.9592 0.9892 0.9255 0.9365 0.8461

CURE

SMOTE

0.9146 0.8659 0.8430 0.9045 0.9901 0.7568 0.9369 0.9522 0.9833 0.9287 0.9381 0.8529

Edge Det

SMOTE

0.9422 0.8622 0.8233 0.8864 0.9908 0.7932 0.9431 0.9589 0.9833 0.9294 0.9452 0.8345

CBSO 0.9473 0.8615 0.8143 0.9000 0.9901 0.8121 0.9276 0.9511 0.9814 0.9257 0.9452 0.8379

Assembled

SMOTE

0.9297 0.8621 0.8290 0.8955 0.9919 0.8114 0.9430 0.9622 0.9824 0.9332 0.9504 0.8402

SDSMOTE 0.9322 0.8619 0.8232 0.9182 0.9915 0.7311 0.9464 0.9622 0.9833 0.9279 0.9517 0.8356

DSMOTE 0.9222 0.8778 0.8602 0.8773 0.9901 0.8106 0.9403 0.9567 0.9853 0.9325 0.9471 0.8645

G SMOTE 0.9422 0.8651 0.8315 0.8909 0.9919 0.8136 0.9337 0.9633 0.9843 0.9416 0.9452 0.8420

NT SMOTE 0.9196 0.8622 0.8290 0.8909 0.9901 0.7939 0.9556 0.9556 0.9814 0.9226 0.9356 0.8420

Lee 0.9146 0.8665 0.8364 0.9091 0.9897 0.8023 0.9462 0.9533 0.9843 0.9287 0.9381 0.8460

Assembled SMOTE and G-SMOTE demonstrated the highest accuracy performance, achieving a score

of 0.9919 in the MC1 dataset. This indicates that combining these two techniques improved the model's ability

to classify instances within this dataset accurately. On the other hand, the Without SMOTE pair in the KC3

dataset recorded the lowest accuracy value, with a score of 0.4199. This suggests that the dataset may need to

be more balanced, making it easier for the model to accurately classify instances without using techniques such

as SMOTE to address this imbalance. In addition, CBSO and Catboost outperformed other variants in terms of

AUC, with a score of 0.9993 in the PC2 dataset, and Assembled SMOTE again demonstrated the best

performance in terms of G-mean, with a score of 0.9938 in the MC1 dataset. However, the CM1, MW1, and

PC2 datasets recorded the lowest AUC and G-mean values, NaN, without SMOTE. This highlights the

importance of handling class imbalance for reliable model evaluation, especially when dealing with datasets

dominated by a majority class.

http://issn.lipi.go.id/issn.cgi?daftar&1368096553&1&&

ISSN: 2338-3070 Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI) 207

 Vol. 10, No. 2, June 2024, pp. 201-216

Effect of SMOTE Variants on Software Defect Prediction Classification Based on Boosting Algorithm (Rahmina Ulfah

Aflaha)

Table 5. AUC Results of SMOTE Variants in Catboost Classification
 CM1 JM1 KC1 KC3 MC1 MC2 MW1 PC1 PC2 PC3 PC4 PC5

Without

SMOTE

NaN 0.7102 0.6879 0.7797 0.8888 0.7953 NaN 0.8634 NaN 0.8211 0.9296 0.8037

SMOTE IPF 0.9889 0.9239 0.8895 0.9686 0.9993 0.8630 0.9904 0.9925 0.9992 0.9829 0.9912 0.9226

Kernel

ADASYN

0.9881 0.9251 0.8939 0.9694 0.9995 0.8669 0.9896 0.9947 0.9991 0.9841 0.9911 0.9244

MOT2LD 0.9703 0.9241 0.8833 0.9565 0.9975 0.8546 0.9717 0.9896 0.9982 0.9808 0.9915 0.9145

OUPS 0.9253 0.9172 0.8605 0.9048 0.9984 0.8025 0.9456 0.9778 0.9937 0.9703 0.9845 0.9068

SMOTE D 0.9757 0.9210 0.8906 0.9600 0.9973 0.8593 0.9795 0.9902 0.9995 0.9773 0.9895 0.9249

CURE

SMOTE

0.9669 0.9198 0.8899 0.9467 0.9981 0.8569 0.9845 0.9898 0.9989 0.9782 0.9895 0.9253

Edge Det

SMOTE

0.9852 0.9244 0.8915 0.9507 0.9990 0.8638 0.9864 0.9947 0.9993 0.9834 0.9908 0.9193

CBSO 0.9899 0.9198 0.8792 0.9663 0.9993 0.8514 0.9813 0.9909 0.9998 0.9811 0.9900 0.9213

Assembled

SMOTE

0.9828 0.9243 0.8924 0.9505 0.9994 0.8695 0.9886 0.9934 0.9991 0.9839 0.9910 0.9243

SDSMOTE 0.9859 0.9248 0.8888 0.9663 0.9994 0.8427 0.9928 0.9938 0.9993 0.9847 0.9917 0.9185

DSMOTE 0.9775 0.9383 0.9195 0.9375 0.9970 0.9218 0.9684 0.9884 0.9983 0.9805 0.9919 0.9454

G SMOTE 0.9889 0.9240 0.8947 0.9637 0.9993 0.8469 0.9765 0.9955 0.9995 0.9856 0.9918 0.9282

NT SMOTE 0.9802 0.9238 0.8937 0.9587 0.9986 0.8495 0.9771 0.9917 0.9990 0.9796 0.9901 0.9217

Lee 0.9710 0.9232 0.8878 0.9593 0.9979 0.8743 0.9758 0.9893 0.9982 0.9780 0.9904 0.9238

Table 6. G-mean Results of SMOTE Variants in Catboost Classification
 CM1 JM1 KC1 KC3 MC1 MC2 MW1 PC1 PC2 PC3 PC4 PC5

Without

SMOTE

NaN 0.3466 0.4311 0.7692 0.4388 0.5949 NaN 0.3599 NaN 0.2575 0.6533 0.5785

SMOTE

IPF

0.9589 0.8325 0.8151 0.8925 0.9932 0.8288 0.9597 0.9690 0.9385 0.9385 0.9625 0.8438

Kernel

ADASYN

0.9672 0.8311 0.8186 0.9098 0.9936 0.8399 0.9581 0.9764 0.9376 0.9376 0.9648 0.8495

MOT2LD 0.9208 0.8391 0.8038 0.9182 0.9894 0.7601 0.9378 0.9527 0.9418 0.9418 0.9543 0.8444

OUPS 0.8446 0.8205 0.7665 0.8408 0.9844 0.7480 0.8667 0.9218 0.8979 0.8979 0.9375 0.8231

SMOTE D 0.9231 0.8225 0.7892 0.8915 0.9881 0.7389 0.9144 0.9535 0.9187 0.9187 0.9328 0.8197

CURE

SMOTE

0.9021 0.8209 0.7958 0.8828 0.9865 0.7506 0.9401 0.9464 0.9201 0.9201 0.9318 0.8203

Edge Det

SMOTE

0.9661 0.8331 0.8029 0.9046 0.9925 0.8011 0.9488 0.9669 0.9392 0.9392 0.9606 0.8364

CBSO 0.9656 0.8257 0.7965 0.9089 0.9929 0.8092 0.9447 0.9642 0.9366 0.9366 0.9603 0.8430

Assembled

SMOTE

0.9526 0.8296 0.8158 0.9007 0.9938 0.8041 0.9550 0.9732 0.9446 0.9446 0.9663 0.8437

SDSMOTE 0.9525 0.8296 0.8075 0.9189 0.9936 0.7379 0.9640 0.9722 0.9419 0.9419 0.9648 0.8382

DSMOTE 0.9013 0.8360 0.8174 0.8544 0.9860 0.7608 0.9322 0.9438 0.9176 0.9176 0.9378 0.8398

G SMOTE 0.9535 0.8344 0.8145 0.8901 0.9930 0.7873 0.9413 0.9693 0.9520 0.9520 0.9597 0.8494

NT

SMOTE

0.9294 0.8298 0.8042 0.8803 0.9879 0.7857 0.9522 0.9545 0.9216 0.9216 0.9396 0.8370

Lee 0.8970 0.8394 0.8182 0.9130 0.9912 0.7815 0.9420 0.9437 0.9351 0.9351 0.9427 0.8497

3.2. Classification with LightGBM

A software defect prediction model was evaluated using the LightGBM algorithm, and the findings are

presented in three tables: Table 7 shows the accuracy results, Table 8 presents the AUC (Area Under the Curve)

results, and Table 9 displays the G-mean results. The test results in Table 7, Table 8, and Table 9 showed that

the combination of Assembled SMOTE and the LightGBM algorithm achieved the highest accuracy of 0.9915

on the MC1 dataset. This indicates that using these two techniques together is particularly effective in

improving the model's ability to correctly categorize instances in this dataset, which may have a significant

class imbalance. However, CBSO performed better than the others in AUC, scoring 0.9993 on the PC2 dataset.

CBSO is particularly effective in distinguishing between positive and negative classes in this dataset, leading

to high accuracy in this metric. The ADASYN kernel achieved the highest score of 0.9925 on the MC1 dataset

for G-mean, indicating that ADASYN is particularly effective in balancing the class distribution and enhancing

the model's ability to classify instances in this dataset correctly. The KC3 dataset obtained an accuracy score

of 0.3960 without using SMOTE. It scored the lowest value of NaN for AUC and G-mean on the CM1, MW1,

and PC2 datasets without SMOTE. This indicates that the model encountered issues during the evaluation

of these datasets, potentially due to class imbalance or extreme values, leading to NaN values in the metrics.

http://issn.lipi.go.id/issn.cgi?daftar&1368096553&1&&

208 Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI) ISSN: 2338-3070

 Vol. 10, No. 2, June 2024, pp. 201-216

Effect of SMOTE Variants on Software Defect Prediction Classification Based on Boosting Algorithm (Rahmina Ulfah

Aflaha)

Table 7. Accuracy Results of SMOTE Variants in LightGBM Classification
 CM1 JM1 KC1 KC3 MC1 MC2 MW1 PC1 PC2 PC3 PC4 PC5

Without

SMOTE

0.8551 0.7885 0.7500 0.3960 0.9799 0.6931 0.8928 0.9129 0.9674 0.8567 0.8822 0.7536

SMOTE IPF 0.9322 0.8629 0.8208 0.9136 0.9908 0.6955 0.9462 0.9667 0.9853 0.9309 0.9401 0.8414

Kernel

ADASYN

0.9372 0.8615 0.8281 0.9136 0.9915 0.7576 0.9430 0.9656 0.9853 0.9310 0.9459 0.8425

MOT2LD 0.9291 0.8631 0.8088 0.9097 0.9889 0.7445 0.9406 0.9540 0.9891 0.9422 0.9426 0.8376

OUPS 0.8744 0.8616 0.8018 0.8773 0.9849 0.6515 0.8864 0.9433 0.9745 0.9112 0.9201 0.8235

SMOTE D 0.9200 0.8687 0.8279 0.8842 0.9879 0.7856 0.9303 0.9593 0.9853 0.9255 0.9319 0.8410

CURE

SMOTE

0.9221 0.8656 0.8306 0.8909 0.9890 0.7402 0.9493 0.9467 0.9873 0.9204 0.9311 0.8379

Edge Det

SMOTE

0.9272 0.8631 0.8241 0.9000 0.9901 0.7576 0.9399 0.9656 0.9853 0.9302 0.9394 0.8385

CBSO 0.9272 0.8644 0.8085 0.9000 0.9901 0.7492 0.9275 0.9511 0.9873 0.9279 0.9414 0.8345

Assembled

SMOTE

0.9347 0.8636 0.8249 0.8773 0.9915 0.8197 0.9464 0.9644 0.9824 0.9325 0.9465 0.8368

SDSMOTE 0.9272 0.8649 0.8348 0.9000 0.9904 0.7492 0.9556 0.9644 0.9824 0.9363 0.9465 0.8362

DSMOTE 0.9146 0.8783 0.8602 0.8591 0.9901 0.8114 0.9309 0.9533 0.9853 0.9294 0.9517 0.8668

G SMOTE 0.9323 0.8636 0.8142 0.8909 0.9904 0.7500 0.9463 0.9667 0.9833 0.9370 0.9414 0.8414

NT SMOTE 0.9197 0.8633 0.8150 0.8864 0.9890 0.7583 0.9525 0.9567 0.9824 0.9241 0.9291 0.8327

Lee 0.8970 0.8650 0.8191 0.9000 0.9897 0.8038 0.9240 0.9544 0.9853 0.9256 0.9362 0.8385

Table 8. AUC Results of SMOTE Variants in LightGBM Classification
 CM1 JM1 KC1 KC3 MC1 MC2 MW1 PC1 PC2 PC3 PC4 PC5

Without

SMOTE

NaN 0.6941 0.6771 0.8136 0.8915 0.7566 NaN 0.8624 NaN 0.8023 0.9165 0.7773

SMOTE IPF 0.9829 0.9223 0.8944 0.9661 0.9993 0.7957 0.9892 0.9919 0.9983 0.9824 0.9910 0.9234

Kernel

ADASYN

0.9768 0.9218 0.8944 0.9696 0.9993 0.8019 0.9888 0.9948 0.9981 0.9843 0.9912 0.9227

MOT2LD 0.9783 0.9218 0.8826 0.9665 0.9971 0.8219 0.9713 0.9869 0.9985 0.9819 0.9899 0.9165

OUPS 0.9416 0.9192 0.8728 0.9271 0.9990 0.7649 0.9616 0.9840 0.9973 0.9748 0.9832 0.9110

SMOTE D 0.9788 0.9181 0.8885 0.9582 0.9967 0.8594 0.9799 0.9897 0.9993 0.9764 0.9873 0.9193

CURE

SMOTE

0.9701 0.9188 0.8851 0.9387 0.9973 0.8321 0.9759 0.9892 0.9979 0.9753 0.9877 0.9193

Edge Det

SMOTE

0.9780 0.9218 0.9031 0.9548 0.9988 0.8194 0.9931 0.9958 0.9986 0.9823 0.9901 0.9216

CBSO 0.9841 0.9194 0.8779 0.9743 0.9992 0.8238 0.9871 0.9920 0.9993 0.9832 0.9896 0.9183

Assembled

SMOTE

0.9745 0.9207 0.8994 0.9502 0.9991 0.8617 0.9878 0.9934 0.9982 0.9835 0.9905 0.9265

SDSMOTE 0.9833 0.9233 0.9018 0.9727 0.9992 0.7942 0.9912 0.9938 0.9985 0.9858 0.9907 0.9211

DSMOTE 0.9778 0.9353 0.9211 0.9344 0.9968 0.9045 0.9559 0.9869 0.9981 0.9799 0.9901 0.9414

G SMOTE 0.9841 0.9221 0.8946 0.9600 0.9985 0.8288 0.9856 0.9944 0.9990 0.9837 0.9908 0.9277

NT SMOTE 0.9760 0.9203 0.8896 0.9596 0.9982 0.8306 0.9789 0.9902 0.9983 0.9801 0.9887 0.9201

Lee 0.9640 0.9213 0.8901 0.9526 0.9973 0.8739 0.9741 0.9881 0.9984 0.9787 0.9878 0.9212

Table 9. G-mean Results of SMOTE Variants in LightGBM Classification
 CM1 JM1 KC1 KC3 MC1 MC2 MW1 PC1 PC2 PC3 PC4 PC5

Without

SMOTE

NaN 0.3691 0.5224 0.7626 0.5055 0.6272 NaN 0.4281 NaN 0.3972 0.6610 0.5851

SMOTE IPF 0.9529 0.8324 0.8158 0.9187 0.9913 0.6847 0.9540 0.9724 0.9886 0.9369 0.9490 0.8405

Kernel

ADASYN

0.9555 0.8288 0.8209 0.9112 0.9925 0.7739 0.9459 0.9719 0.9885 0.9334 0.9555 0.8412

MOT2LD 0.9269 0.8344 0.8056 0.9158 0.9872 0.7550 0.9419 0.9487 0.9861 0.9475 0.9496 0.8399

OUPS 0.8746 0.8231 0.7884 0.8702 0.9850 0.6596 0.8829 0.9415 0.9804 0.9084 0.9263 0.8214

SMOTE D 0.9278 0.8242 0.8135 0.8835 0.9869 0.7595 0.9238 0.9522 0.9865 0.9201 0.9286 0.8245

CURE

SMOTE

0.9180 0.8230 0.8059 0.8713 0.9852 0.7486 0.9464 0.9407 0.9856 0.9083 0.9233 0.8179

Edge Det

SMOTE

0.9476 0.8317 0.8203 0.8950 0.9906 0.7559 0.9390 0.9694 0.9896 0.9350 0.9486 0.8413

CBSO 0.9441 0.8279 0.7964 0.8956 0.9910 0.7446 0.9356 0.9563 0.9905 0.9320 0.9502 0.8360

Assembled

SMOTE

0.9518 0.8308 0.8241 0.8673 0.9921 0.8366 0.9509 0.9690 0.9871 0.9405 0.9550 0.8394

SDSMOTE 0.9453 0.8324 0.8323 0.8936 0.9915 0.7689 0.9590 0.9703 0.9861 0.9412 0.9577 0.8394

DSMOTE 0.8993 0.8366 0.8353 0.8499 0.9867 0.7889 0.9193 0.9434 0.9829 0.9160 0.9455 0.8470

G SMOTE 0.9441 0.8320 0.8117 0.8894 0.9908 0.7469 0.9509 0.9668 0.9836 0.9377 0.9456 0.8426

NT SMOTE 0.9273 0.8280 0.8081 0.8705 0.9870 0.7511 0.9506 0.9495 0.9810 0.9196 0.9306 0.8298

Lee 0.8853 0.8357 0.8120 0.8917 0.9890 0.7898 0.9242 0.9445 0.9855 0.9267 0.9397 0.8430

3.3. Classification with Gradient Boosting

The software defect prediction model with the Gradient Boosting algorithm was measured, and the results

are presented in Table 10, Table 11, and Table 12. Table 10 displays the accuracy results, Table 11 presents

http://issn.lipi.go.id/issn.cgi?daftar&1368096553&1&&

ISSN: 2338-3070 Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI) 209

 Vol. 10, No. 2, June 2024, pp. 201-216

Effect of SMOTE Variants on Software Defect Prediction Classification Based on Boosting Algorithm (Rahmina Ulfah

Aflaha)

the AUC (Area Under the Curve), and Table 12 shows the G-mean results. Based on the results of the SMOTE

Variants model test using the Gradient Boosting algorithm in Table 10, Table 11, and Table 12. DSMOTE

achieved the highest accuracy with a score of 0.9893 on the MC1 dataset. This excellent performance

demonstrates the effectiveness of DSMOTE in addressing class imbalance issues within the MC1 dataset. For

the PC2 dataset, CBSO achieved the highest AUC value of 0.9990, indicating its ability to distinguish between

positive and negative classes effectively. Additionally, the ADAYSN Kernel had the best G-mean score of

0.9902 on the MC1 dataset, highlighting its effectiveness in balancing precision and recall. It is important to

note that pairs without SMOTE in datasets CM1, MW1, and PC2 exhibit the lowest AUC and G-mean values,

denoted by NaN, suggesting that these datasets may require alternative strategies to address class imbalance

effectively. In Fig. 2, the accuracy values of different models are displayed. The highest accuracy is achieved

by the DSMOTE and gradient boosting models, with a value of 0.9161, while the lowest accuracy is attained

by the models Without SMOTE and Gradient Boosting, with a value of 0.6696. This significant difference in

accuracy highlights the crucial role of SMOTE in addressing class imbalance and improving the overall

performance of machine learning models. The difference between the two values is a substantial 36.82%,

emphasizing the significant impact that SMOTE, especially when combined with gradient boosting, can have

on model accuracy. The results presented in Fig. 3 show that using SMOTE for class imbalance correction

significantly improved the AUC. The best-performing combination was using DSMOTE with the Catboost

algorithm, which achieved the highest AUC of 0.9637. On the other hand, the model trained without SMOTE

and using LightGBM resulted in the lowest AUC score of 0.5993. This represents a substantial improvement

of 60.82% and highlights the effectiveness of using SMOTE to address class imbalance and enhance the overall

performance of machine learning models for software defect prediction.

Table 10. Accuracy Results of SMOTE Variants in Gradient Boosting Classification
 CM1 JM1 KC1 KC3 MC1 MC2 MW1 PC1 PC2 PC3 PC4 PC5

Without

SMOTE
0.8415 0.7900 0.7453 0.4423 0.9792 0.7944 0.8480 0.9088 0.9693 0.8633 0.8933 0.7611

SMOTE IPF 0.9272 0.8315 0.7969 0.9091 0.9882 0.8038 0.9432 0.9467 0.9794 0.9166 0.9401 0.8201

Kernel

ADASYN

0.9271 0.8376 0.7969 0.8909 0.9882 0.8106 0.9465 0.9522 0.9814 0.9180 0.9375 0.8206

MOT2LD 0.9002 0.8421 0.8097 0.9195 0.9882 0.8573 0.9178 0.9495 0.9871 0.9219 0.9373 0.8293

OUPS 0.8719 0.8460 0.7837 0.8818 0.9746 0.7750 0.8992 0.9278 0.9569 0.9044 0.9227 0.8149

SMOTE D 0.9026 0.8655 0.8149 0.8879 0.9875 0.8205 0.9239 0.9471 0.9823 0.9240 0.9371 0.8341

CURE

SMOTE

0.9020 0.8658 0.8208 0.8727 0.9882 0.7568 0.9496 0.9478 0.9804 0.9234 0.9311 0.8362

Edge Det

SMOTE

0.9397 0.8381 0.8085 0.8955 0.9842 0.7932 0.9340 0.9511 0.9794 0.9173 0.9336 0.8172

CBSO 0.9272 0.8487 0.7912 0.9000 0.9827 0.8212 0.9148 0.9478 0.9843 0.9120 0.9388 0.8160

Assembled

SMOTE

0.9195 0.8384 0.8134 0.8864 0.9864 0.8394 0.9337 0.9489 0.9794 0.9234 0.9414 0.8166

SDSMOTE 0.9347 0.8400 0.7994 0.8773 0.9867 0.7667 0.9527 0.9467 0.9804 0.9233 0.9407 0.8270

DSMOTE 0.9322 0.8789 0.8536 0.8773 0.9893 0.8659 0.9245 0.9511 0.9833 0.9317 0.9459 0.8593

G SMOTE 0.9272 0.8402 0.8043 0.9136 0.9882 0.8303 0.9147 0.9533 0.9794 0.9249 0.9420 0.8241

NT SMOTE 0.9246 0.8524 0.8125 0.8727 0.9886 0.7939 0.9494 0.9456 0.9775 0.9150 0.9356 0.8270

Lee 0.8994 0.8436 0.8241 0.9136 0.9890 0.8030 0.9335 0.9456 0.9814 0.9234 0.9375 0.8247

Table 11. AUC Results of SMOTE Variants in Gradient Boosting Classification
 CM1 JM1 KC1 KC3 MC1 MC2 MW1 PC1 PC2 PC3 PC4 PC5

Without

SMOTE

NaN 0.7036 0.6774 0.7627 0.8892 0.8421 NaN 0.8129 NaN 0.8091 0.9239 0.7723

SMOTE IPF 0.9784 0.9038 0.8705 0.9621 0.9985 0.8695 0.9831 0.9891 0.9982 0.9749 0.9889 0.8967

Kernel

ADASYN

0.9732 0.9063 0.8647 0.9643 0.9985 0.8569 0.9841 0.9911 0.9989 0.9763 0.9875 0.9016

MOT2LD 0.9725 0.9070 0.8718 0.9637 0.9974 0.8881 0.9669 0.9864 0.9980 0.9768 0.9902 0.9037

OUPS 0.9291 0.9091 0.8480 0.9387 0.9977 0.7662 0.9627 0.9800 0.9957 0.9702 0.9834 0.8966

SMOTE D 0.9711 0.9190 0.8801 0.9468 0.9974 0.8732 0.9736 0.9867 0.9988 0.9766 0.9872 0.9136

CURE

SMOTE

0.9665 0.9175 0.8798 0.9436 0.9978 0.8299 0.9801 0.9860 0.9980 0.9758 0.9871 0.9131

Edge Det

SMOTE

0.9742 0.9050 0.8732 0.9402 0.9977 0.8304 0.9849 0.9894 0.9983 0.9770 0.9868 0.8951

CBSO 0.9810 0.9107 0.8640 0.9565 0.9983 0.8819 0.9788 0.9858 0.9990 0.9747 0.9869 0.9030

Assembled

SMOTE

0.9789 0.9063 0.8708 0.9435 0.9987 0.8762 0.9822 0.9873 0.9985 0.9757 0.9872 0.9018

SDSMOTE 0.9800 0.9049 0.8690 0.9586 0.9988 0.8435 0.9861 0.9894 0.9990 0.9776 0.9884 0.9010

DSMOTE 0.9793 0.9370 0.9121 0.9353 0.9970 0.9219 0.9651 0.9837 0.9980 0.9816 0.9908 0.9390

G SMOTE 0.9795 0.9076 0.8773 0.9476 0.9984 0.8658 0.9749 0.9919 0.9987 0.9787 0.9896 0.9038

NT SMOTE 0.9759 0.9132 0.8745 0.9528 0.9982 0.8486 0.9733 0.9883 0.9978 0.9781 0.9885 0.9033

Lee 0.9636 0.9062 0.8691 0.9533 0.9981 0.8519 0.9706 0.9856 0.9980 0.9738 0.9883 0.9046

http://issn.lipi.go.id/issn.cgi?daftar&1368096553&1&&

210 Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI) ISSN: 2338-3070

 Vol. 10, No. 2, June 2024, pp. 201-216

Effect of SMOTE Variants on Software Defect Prediction Classification Based on Boosting Algorithm (Rahmina Ulfah

Aflaha)

Table 12. G-mean Results of SMOTE Variants in Gradient Boosting Classification
 CM1 JM1 KC1 KC3 MC1 MC2 MW1 PC1 PC2 PC3 PC4 PC5

Without

SMOTE

NaN 0.3191 0.4231 0.7852 0.5632 0.7148 NaN 0.4619 NaN 0.3841 0.6558 0.5462

SMOTE IPF 0.9451 0.8067 0.7810 0.8976 0.9899 0.8006 0.9486 0.9570 0.9875 0.9283 0.9535 0.8227

Kernel

ADASYN

0.9446 0.8132 0.7798 0.8984 0.9902 0.8140 0.9536 0.9611 0.9875 0.9272 0.9499 0.8285

MOT2LD 0.9060 0.8253 0.7825 0.9206 0.9888 0.8235 0.9206 0.9459 0.9851 0.9290 0.9426 0.8281

OUPS 0.8638 0.8143 0.7598 0.8786 0.9734 0.7632 0.8927 0.9331 0.9657 0.9075 0.9346 0.8143

SMOTE D 0.9076 0.8165 0.7848 0.8892 0.9859 0.7724 0.9111 0.9418 0.9839 0.9164 0.9325 0.8052

CURE

SMOTE

0.8941 0.8193 0.7744 0.8604 0.9851 0.7403 0.9465 0.9377 0.9821 0.9111 0.9220 0.8030

Edge Det

SMOTE

0.9606 0.8148 0.7842 0.8923 0.9868 0.7732 0.9447 0.9611 0.9866 0.9260 0.9465 0.8129

CBSO 0.9400 0.8192 0.7753 0.9112 0.9833 0.7947 0.9247 0.9527 0.9900 0.9177 0.9507 0.8166

Assembled

SMOTE

0.9371 0.8154 0.7955 0.8981 0.9899 0.8099 0.9307 0.9600 0.9846 0.9326 0.9530 0.8175

SDSMOTE 0.9452 0.8147 0.7768 0.8793 0.9890 0.7545 0.9522 0.9593 0.9870 0.9297 0.9519 0.8244

DSMOTE 0.9174 0.8321 0.8149 0.8694 0.9860 0.8439 0.9243 0.9411 0.9835 0.9180 0.9349 0.8420

G SMOTE 0.9340 0.8175 0.7855 0.9052 0.9896 0.8281 0.9192 0.9601 0.9827 0.9345 0.9521 0.8268

NT SMOTE 0.9254 0.8277 0.7914 0.8620 0.9867 0.7705 0.9409 0.9467 0.9766 0.9146 0.9374 0.8241

Lee 0.8940 0.8239 0.8114 0.9025 0.9902 0.7640 0.9255 0.9376 0.9826 0.9266 0.9416 0.8237

In Fig. 4, the average G-means value differs significantly between the Without SMOTE and SMOTE

models, highlighting the effectiveness of SMOTE in addressing class imbalance. The highest G-mean value of

0.9154 is achieved by the ADAYSN Kernel and Catboost pair, indicating its suitability for handling imbalanced

datasets. Conversely, the lowest G-mean value is 0.3691, observed in the Without SMOTE and Catboost pair,

emphasizing the importance of incorporating SMOTE. The difference between the two values is a staggering

147.96%, emphasizing the significant impact of SMOTE on model performance.

Fig. 2. Comparison of Average Accuracy

Fig. 3. Comparison of Average AUC

http://issn.lipi.go.id/issn.cgi?daftar&1368096553&1&&

ISSN: 2338-3070 Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI) 211

 Vol. 10, No. 2, June 2024, pp. 201-216

Effect of SMOTE Variants on Software Defect Prediction Classification Based on Boosting Algorithm (Rahmina Ulfah

Aflaha)

Based on the research results, it is crucial to use SMOTE to address unbalanced datasets. This is supported

by the fact that several datasets, including CM1, MW1, and PC2, resulted in a value of NaN when SMOTE

was not used. NaN (Not a Number) is a specific undefined value for numeric data types in computing. The

occurrence of NaN in the dataset is likely due to class imbalance. Additionally, the choice of k-fold cross-

validation parameters, particularly the number of folds (k), can potentially influence the occurrence of NaN

values and, consequently, impact algorithm performance evaluation.During our research, we discovered a NaN

value in the data set, which prompted us to investigate the issue further. As a result, we carried out a study to

examine the impact of different K-fold values on the CM1, MW1, and PC2 datasets. The results of our

experiments show that using various K-fold values improve performance metrics, as shown in Table 13.

However, after careful consideration, we decided to use the 10-fold cross-validation. This aligns with previous

research [23]-[25] highlighting the advantages of 10-fold cross-validation in minimizing bias and ensuring a

more trustworthy evaluation of model generalizations. Comparison of model without SMOTE performance

with different K-fold values shown in Table 13.

Fig. 4. Comparison of Average G-mean

Table 13. Comparison of Model Without SMOTE Performance with Different K-fold Values

Algorithm
K-fold Value CM1 MW1 PC2

AUC G-mean AUC G-mean AUC G-mean

Catboost
K=3 0.8248 0.1454 0.6808 0.4368 0.9034 0.000

K=5 0.7926 0.1408 0.6902 0.2838 0.9022 0.000

LightGBM
K=3 0.8158 0.2045 0.7023 0.4253 0.8726 0.000

K=5 0.8429 0.3634 0.7068 0.3913 0.8942 0.000

Gradient Boosting
K=3 0.8281 0.4491 0,6225 0.4397 0.8877 0.000

K=5 0.7890 0.3440 0.6779 0.3832 0.9047 0.000

This study aims to compare the performance of the proposed model with models from previous studies,

as presented in Table 14. However, direct comparison of the results with [13], [18], [19] studies is limited due

to differences in the evaluation matrices. Therefore, we have chosen to compare our research to studies [14]-

[17] based on their AUC values and methodological similarity to our study. We selected the studies with the

highest AUC values to represent the best performance of the SMOTE Variant in those studies.

The analysis conducted in Table 14 indicates that the proposed method, which combines SMOTE Variants

and Boosting Algorithms, can potentially enhance binary classification performance. This is supported by the

AUC value, which is superior to other research methods. However, the performance is not consistently better

than other methods, such as OUPS method, and this method's potential appears promising. It is worth noting

that factors such as hyperparameter settings, data characteristics, and the choice of boosting algorithm can

affect performance.

The proposed software defect prediction model offers many benefits to improve software quality and the

efficiency of the development process. The model can help developers predict the likelihood of defects in

software modules, enable early detection, and prioritize which modules should be tested first. The results of

this study can serve as a foundation for further research and are expected to encourage research in this field to

grow and produce better solutions.

http://issn.lipi.go.id/issn.cgi?daftar&1368096553&1&&

212 Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI) ISSN: 2338-3070

 Vol. 10, No. 2, June 2024, pp. 201-216

Effect of SMOTE Variants on Software Defect Prediction Classification Based on Boosting Algorithm (Rahmina Ulfah

Aflaha)

Table 14. Comparison of AUC Results with Previous Studies

Research Algorithm AUC

[14] CURE SMOTE + SVM 0.9068

 GSMOTE + SVM 0.9062

 LEE + DT 0.8834

 Assembled SMOTE+ DT 0.8834

 SMOTE IPF + DT 0.8828

[15] OUPS 0.97

[16] GSMOTE 0.8857

 SDSMOTE 0.8823

[17] Kernel ADASYN 0.7902

Our Research CURE SMOTE + Catboost 0.9537

 GSMOTE + Catboost 0.9579

 LEE + Catboost 0.9557

 Assembled SMOTE+ Catboost 0.9583

 SMOTE IPF + Catboost 0.9593

 OUPS + LightGBM 0.9364

 GSMOTE + Catboost 0.9579

 SDSMOTE + Catboost 0.9574

4. CONCLUSION

The research suggests that the Boosting model, when used with various variations of SMOTE, can predict

software defects in the NASA MDP D'' dataset. The study evaluates performance using accuracy, AUC, and

G-mean metrics. It concludes that using SMOTE Variants with the Boosting algorithm can enhance

classification performance for software defect prediction. The combination of DSMOTE with Gradient

Boosting achieved the highest average accuracy of 0.9161. Additionally, DSMOTE and Catboost had the

highest average AUC value of 0.9637, while Kernel ADASYN and Catboost showed the best ability to achieve

an average G-mean value of 0.9154.

The study suggests that SMOTE Variants and Algorithm Boosting can effectively enhance software

defect prediction. However, further investigation is required to address certain limitations. The results reveal a

concerning presence of NaN values for AUC and G-mean across multiple boosting algorithms on datasets

CM1, MW1, and PC2. This issue may be due to the 10-fold cross-validation methodology, where data

stratification was not adequately ensured during fold creation. As a result, some folds may have imbalanced

class distributions, leading to models encountering unseen data during training and generating undefined

metrics (NaN).

Future research should focus on developing new classification methods, testing newer variations of

SMOTE, and evaluating model performance on various datasets. This could involve exploring different

techniques for handling class imbalance, such as oversampling minority classes or undersampling majority

classes and assessing the effectiveness of these methods on a range of datasets. Additionally, further research

can consider other factors, such as the value of k in cross-validation or the percentage distribution of datasets,

to better understand how these variables impact model performance.

REFERENCES
[1] J. Liu, J. Ai, M. Lu, J. Wang, and H. Shi, “Semantic feature learning for software defect prediction from source code

and external knowledge,” Journal of Systems and Software, vol. 204, Oct. 2023,

https://doi.org//10.1016/j.jss.2023.111753.

[2] F. Huang and L. Strigini, “HEDF: A Method for Early Forecasting Software Defects Based on Human Error

Mechanisms,” IEEE Access, vol. 11, pp. 3626–3652, 2023, https://doi.org//10.1109/ACCESS.2023.3234490.

[3] C. Manjula and L. Florence, “Deep neural network based hybrid approach for software defect prediction using

software metrics,” Cluster Comput, vol. 22, pp. 9847–9863, Jul. 2019, https://doi.org//10.1007/s10586-018-1696-z.

[4] H. Aljamaan and A. Alazba, “Software defect prediction using tree-based ensembles,” in PROMISE Proceedings of

the 16th ACM International Conference on Predictive Models and Data Analytics in Software Engineering, Co-

located with ESEC/FSE, pp. 1–10, 2020, https://doi.org//10.1145/3416508.3417114.

[5] D. Meng and Y. Li, “An imbalanced learning method by combining SMOTE with Center Offset Factor,” Appl Soft

Comput, vol. 120, May 2022, https://doi.org//10.1016/j.asoc.2022.108618.

http://issn.lipi.go.id/issn.cgi?daftar&1368096553&1&&
https://doi.org/10.1016/j.jss.2023.111753
https://doi.org/10.1109/ACCESS.2023.3234490
https://doi.org/10.1007/s10586-018-1696-z
https://doi.org/10.1145/3416508.3417114
https://doi.org/10.1016/j.asoc.2022.108618

ISSN: 2338-3070 Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI) 213

 Vol. 10, No. 2, June 2024, pp. 201-216

Effect of SMOTE Variants on Software Defect Prediction Classification Based on Boosting Algorithm (Rahmina Ulfah

Aflaha)

[6] S. Goyal, “Handling Class-Imbalance with KNN (Neighbourhood) Under-Sampling for Software Defect

Prediction,” Artif Intell Rev, vol. 55, no. 3, pp. 2023–2064, Mar. 2022, https://doi.org//10.1007/s10462-021-10044-

w.

[7] N. U. Niaz, K. M. N. Shahariar, and M. J. A. Patwary, “Class Imbalance Problems in Machine Learning: A Review

of Methods And Future Challenges,” in ACM International Conference Proceeding Series, Association for

Computing Machinery, pp. 485–490, Mar. 2022, https://doi.org//10.1145/3542954.3543024.

[8] M. M. Ahsan, M. S. Ali, and Z. Siddique, “Enhancing and improving the performance of imbalanced class data

using novel GBO and SSG: A comparative analysis,” Neural Networks, vol. 173, p. 106157, May 2024,

https://doi.org//10.1016/j.neunet.2024.106157.

[9] M. Vardhan, K. Banerjee, and D. Aggarwal, “A Systematic Approach for the Detection of Software Bug Using

Catboost,” in International Conference on Machine Learning, Big Data, Cloud and Parallel Computing, COM-IT-

CON, pp. 414–419, 2022, https://doi.org//10.1109/COM-IT-CON54601.2022.9850519.

[10] M. F. Sohan, M. I. Jabiullah, S. S. M. M. Rahman, and S. M. H. Mahmud, “Assessing the Effect of Imbalanced

Learning on Cross-project Software Defect Prediction,” in 10th International Conference on Computing,

Communication and Networking Technologies (ICCCNT), pp. 1–6, 2019,

https://doi.org//10.1109/ICCCNT45670.2019.8944622.

[11] M. N. Uddin, B. Li, M. N. Mondol, M. M. Rahman, M. S. Mia, and E. L. Mondol, “SDP-ML: An Automated

Approach of Software Defect Prediction employing Machine Learning Techniques,” in Proceedings of International

Conference on Electronics, Communications and Information Technology, ICECIT, pp. 1-4, 2021,

https://doi.org//10.1109/ICECIT54077.2021.9641218.

[12] R. Malhotra and J. Jain, “Handling Imbalanced Data using Ensemble Learning in Software Defect Prediction,” in

10th International Conference on Cloud Computing, Data Science & Engineering (Confluence), pp. 300–304, 2020,

https://doi.org/10.1109/Confluence47617.2020.9058124.

[13] A. S. Tarawneh, A. B. Hassanat, G. A. Altarawneh, and A. Almuhaimeed, “Stop Oversampling for Class Imbalance

Learning: A Review,” IEEE Access, vol. 10, pp. 47643–47660, 2022,

https://doi.org//10.1109/ACCESS.2022.3169512.

[14] G. Kovács, “An empirical comparison and evaluation of minority oversampling techniques on a large number of

imbalanced datasets,” Applied Soft Computing Journal, vol. 83, Oct. 2019,

https://doi.org//10.1016/j.asoc.2019.105662.

[15] J. Zhai, J. Qi, and S. Zhang, “Imbalanced data classification based on diverse sample generation and classifier

fusion,” International Journal of Machine Learning and Cybernetics, vol. 13, no. 3, pp. 735–750, Mar. 2022,

https://doi.org//10.1007/s13042-021-01321-9.

[16] K. Teh, P. Armitage, S. Tesfaye, D. Selvarajah, and I. D. Wilkinson, “Imbalanced learning: Improving classification

of diabetic neuropathy from magnetic resonance imaging,” PLoS One, vol. 15, no. 12, Dec. 2020,

https://doi.org//10.1371/journal.pone.0243907.

[17] H. Ding et al., “KA-Ensemble: towards imbalanced image classification ensembling under-sampling and over-

sampling,” Multimed Tools Appl, vol. 79, no. 21–22, pp. 14871–14888, Jun. 2020, https://doi.org//10.1007/s11042-

019-07856-y.

[18] M. Dudjak and G. Martinović, “In-Depth Performance Analysis of SMOTE-Based Oversampling Algorithms in

Binary Classification,” International Journal of Electrical and Computer Engineering Systems, vol. 11, no. 1, pp.

13–23, 2020, https://doi.org//http://dx.doi.org/10.32985/ijeces.11.1.2.

[19] C. Liu et al., “Constrained Oversampling: An Oversampling Approach to Reduce Noise Generation in Imbalanced

Datasets with Class Overlapping,” IEEE Access, vol. 10, pp. 91452-91465, 2021,

https://doi.org//10.1109/ACCESS.2020.3018911.

[20] A. Adorada, P. W. Wirawan, and K. Kurniawan, “The Comparison of Feature Selection Methods in Software Defect

Prediction,” in ICICoS Proceeding: 4th International Conference on Informatics and Computational Sciences, pp.

1-6, Nov. 2020, https://doi.org//10.1109/ICICoS51170.2020.9299022.

[21] N. Biswas, K. M. M. Uddin, S. T. Rikta, and S. K. Dey, “A comparative analysis of machine learning classifiers for

stroke prediction: A predictive analytics approach,” Healthcare Analytics, vol. 2, Nov. 2022,

https://doi.org//10.1016/j.health.2022.100116.

[22] M. K. Dahouda and I. Joe, “A Deep-Learned Embedding Technique for Categorical Features Encoding,” IEEE

Access, vol. 9, pp. 114381–114391, 2021, https://doi.org//10.1109/ACCESS.2021.3104357.

[23] I. Kaur and A. Kaur, “Comparative analysis of software fault prediction using various categories of classifiers,”

International Journal of System Assurance Engineering and Management, vol. 12, no. 3, pp. 520–535, Jun. 2021,

https://doi.org//10.1007/s13198-021-01110-1.

[24] M. Banga, A. Bansal, and A. Singh, “Proposed approach to predict software faults detection using Entropy,”

International Journal of System Assurance Engineering and Management, vol. 11, pp. 301–312, Jul. 2020,

https://doi.org//10.1007/s13198-019-00934-2.

[25] A. Adorada, P. W. Wirawan, and K. Kurniawan, “The Comparison of Feature Selection Methods in Software Defect

Prediction,” in ICICoS Proceeding: 4th International Conference on Informatics and Computational Sciences, pp.

1-6, Nov. 2020. https://doi.org//10.1109/ICICoS51170.2020.9299022.

http://issn.lipi.go.id/issn.cgi?daftar&1368096553&1&&
https://doi.org/10.1007/s10462-021-10044-w
https://doi.org/10.1007/s10462-021-10044-w
https://doi.org/10.1145/3542954.3543024
https://doi.org/10.1016/j.neunet.2024.106157
https://doi.org/10.1109/COM-IT-CON54601.2022.9850519
https://doi.org/10.1109/ICCCNT45670.2019.8944622
https://doi.org/10.1109/ICECIT54077.2021.9641218
https://doi.org/10.1109/Confluence47617.2020.9058124
https://doi.org/10.1109/ACCESS.2022.3169512
https://doi.org/10.1016/j.asoc.2019.105662
https://doi.org/10.1007/s13042-021-01321-9
https://doi.org/10.1371/journal.pone.0243907
https://doi.org/10.1007/s11042-019-07856-y
https://doi.org/10.1007/s11042-019-07856-y
https://doi.org/http:/dx.doi.org/10.32985/ijeces.11.1.2
https://doi.org/10.1109/ACCESS.2020.3018911
https://doi.org/10.1109/ICICoS51170.2020.9299022
https://doi.org/10.1016/j.health.2022.100116
https://doi.org/10.1109/ACCESS.2021.3104357
https://doi.org/10.1007/s13198-021-01110-1
https://doi.org/10.1007/s13198-019-00934-2
https://doi.org/10.1109/ICICoS51170.2020.9299022

214 Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI) ISSN: 2338-3070

 Vol. 10, No. 2, June 2024, pp. 201-216

Effect of SMOTE Variants on Software Defect Prediction Classification Based on Boosting Algorithm (Rahmina Ulfah

Aflaha)

[26] S. M. Malakouti, M. B. Menhaj, and A. A. Suratgar, “The usage of 10-fold cross-validation and grid search to

enhance ML methods performance in solar farm power generation prediction,” Clean Eng Technol, vol. 15, Aug.

2023, https://doi.org//10.1016/j.clet.2023.100664.

[27] A. M. Akbar, R. Herteno, S. W. Saputro, M. R. Faisal, and R. A. Nugroho, “Optimizing Software Defect Prediction

Models: Integrating Hybrid Grey Wolf and Particle Swarm Optimization for Enhanced Feature Selection with

Popular Gradient Boosting Algorithm,” Journal of Electronics, Electromedical Engineering, and Medical

Informatics, vol. 6, no. 2, pp. 169–181, Apr. 2024, https://doi.org//10.35882/jeeemi.v6i2.388.

[28] N. A. Azhar, M. S. Mohd Pozi, A. M. Din, and A. Jatowt, “An investigation of SMOTE based methods for

imbalanced datasets with data complexity analysis,” IEEE Trans Knowl Data Eng, vol. 35, no. 7, pp. 6651–6672,

Jul. 2023, https://doi.org//10.1109/TKDE.2022.3179381.

[29] T. Murad, S. Ali, and M. Patterson, “Exploring the Potential of GANs in Biological Sequence Analysis,” Biology

(Basel), vol. 12, no. 6, Jun. 2023, https://doi.org//10.3390/biology12060854.

[30] G. A. Pradipta, R. Wardoyo, A. Musdholifah, and I. N. H. Sanjaya, “Radius-SMOTE: A New Oversampling

Technique of Minority Samples Based on Radius Distance for Learning from Imbalanced Data,” IEEE Access, vol.

9, pp. 74763–74777, 2021, https://doi.org//10.1109/ACCESS.2021.3080316.

[31] D. Liu, S. Zhong, L. Lin, M. Zhao, X. Fu, and X. Liu, “Feature-level SMOTE: Augmenting fault samples in learnable

feature space for imbalanced fault diagnosis of gas turbines,” Expert Syst Appl, vol. 238, Mar. 2024,

https://doi.org//10.1016/j.eswa.2023.122023.

[32] S. Wang, Y. Dai, J. Shen, and J. Xuan, “Research on expansion and classification of imbalanced data based on

SMOTE algorithm,” Sci Rep, vol. 11, no. 1, Dec. 2021, https://doi.org//10.1038/s41598-021-03430-5.

[33] X. W. Liang, A. P. Jiang, T. Li, Y. Y. Xue, and G. T. Wang, “LR-SMOTE — An improved unbalanced data set

oversampling based on K-means and SVM,” Knowl Based Syst, vol. 196, May 2020,

https://doi.org//10.1016/j.knosys.2020.105845,

[34] F. Dai, Y. Song, W. Si, G. Yang, J. Hu, and X. Wang, “Improved CBSO: A distributed fuzzy-based adaptive

synthetic oversampling algorithm for imbalanced judicial data,” Inf Sci (N Y), vol. 569, pp. 70–89, Aug. 2021,

https://doi.org//10.1016/j.ins.2021.04.017.

[35] S. Szeghalmy and A. Fazekas, “A Comparative Study of the Use of Stratified Cross-Validation and Distribution-

Balanced Stratified Cross-Validation in Imbalanced Learning,” Sensors, vol. 23, no. 4, Feb. 2023,

https://doi.org//10.3390/s23042333.

[36] Y. Geng, J. Sui, and Q. Zhu, “Rumor Detection of Sina Weibo Based on SDSMOTE and Feature Selection,” in

IEEE 4th International Conference on Cloud Computing and Big Data Analytics, pp. 120–125, 2019,

https://doi.org/10.1109/ICCCBDA.2019.8725715.

[37] G. S. Thejas, Y. Hariprasad, S. S. Iyengar, N. R. Sunitha, P. Badrinath, and S. Chennupati, “An extension of

Synthetic Minority Oversampling Technique based on Kalman filter for imbalanced datasets,” Machine Learning

with Applications, vol. 8, p. 100267, Jun. 2022, https://doi.org//10.1016/j.mlwa.2022.100267.

[38] T. Watthaisong, K. Sunat, and N. Muangkote, “Comparative Evaluation of Imbalanced Data Management

Techniques for Solving Classification Problems on Imbalanced Datasets,” Statistics, Optimization and Information

Computing, vol. 12, no. 2, pp. 547–570, Mar. 2024, https://doi.org//10.19139/soic-2310-5070-1890.

[39] L. Wang, Y. Chen, H. Jiang, and J. Yao, “Imbalanced credit risk evaluation based on multiple sampling, multiple

kernel fuzzy self-organizing map and local accuracy ensemble,” Applied Soft Computing Journal, vol. 91, Jun. 2020,

https://doi.org//10.1016/j.asoc.2020.106262.

[40] C. Lee and J. Kim, “Hybrid Oversampling Technique Based on Star Topology and Rejection Methodology for

Classifying Imbalanced Data,” in IEEE International Conference on Data Mining Workshops, ICDMW, pp. 1217–

1226, 2022, https://doi.org//10.1109/ICDMW58026.2022.00033.

[41] J. Tanha, Y. Abdi, N. Samadi, N. Razzaghi, and M. Asadpour, “Boosting methods for multi-class imbalanced data

classification: an experimental review,” J Big Data, vol. 7, no. 1, Dec. 2020, https://doi.org//10.1186/s40537-020-

00349-y.

[42] W. Chang, X. Wang, J. Yang, and T. Qin, “An Improved CatBoost-Based Classification Model for Ecological

Suitability of Blueberries,” Sensors, vol. 23, no. 4, Feb. 2023, https://doi.org//10.3390/s23041811.

[43] D. Zhang and Y. Gong, “The Comparison of LightGBM and XGBoost Coupling Factor Analysis and Prediagnosis

of Acute Liver Failure,” IEEE Access, vol. 8, pp. 220990-221003, 2020,

https://doi.org//10.1109/ACCESS.2020.3042848.

[44] F. Alzamzami, M. Hoda, and A. El Saddik, “Light Gradient Boosting Machine for General Sentiment Classification

on Short Texts: A Comparative Evaluation,” IEEE Access, vol. 8, pp. 101840–101858, 2020,

https://doi.org//10.1109/ACCESS.2020.2997330.

[45] W. Liang, S. Luo, G. Zhao, and H. Wu, “Predicting hard rock pillar stability using GBDT, XGBoost, and LightGBM

algorithms,” Mathematics, vol. 8, no. 5, May 2020, https://doi.org//10.3390/MATH8050765.

[46] J. Yoon, “Forecasting of Real GDP Growth Using Machine Learning Models: Gradient Boosting and Random Forest

Approach,” Comput Econ, vol. 57, no. 1, pp. 247–265, Jan. 2021, https://doi.org//10.1007/s10614-020-10054-w.

[47] D. K. Thai, T. M. Tu, T. Q. Bui, and T. T. Bui, “Gradient tree boosting machine learning on predicting the failure

modes of the RC panels under impact loads,” Eng Comput, vol. 37, no. 1, pp. 597–608, Jan. 2021,

https://doi.org//10.1007/s00366-019-00842-w.

http://issn.lipi.go.id/issn.cgi?daftar&1368096553&1&&
https://doi.org/10.1016/j.clet.2023.100664
https://doi.org/10.35882/jeeemi.v6i2.388
https://doi.org/10.1109/TKDE.2022.3179381
https://doi.org/10.3390/biology12060854
https://doi.org/10.1109/ACCESS.2021.3080316
https://doi.org/10.1016/j.eswa.2023.122023
https://doi.org/10.1038/s41598-021-03430-5
https://doi.org/10.1016/j.knosys.2020.105845
https://doi.org/10.1016/j.ins.2021.04.017
https://doi.org/10.3390/s23042333
https://doi.org/10.1109/ICCCBDA.2019.8725715
https://doi.org/10.1016/j.mlwa.2022.100267
https://doi.org/10.19139/soic-2310-5070-1890
https://doi.org/10.1016/j.asoc.2020.106262
https://doi.org/10.1109/ICDMW58026.2022.00033
https://doi.org/10.1186/s40537-020-00349-y
https://doi.org/10.1186/s40537-020-00349-y
https://doi.org/10.3390/s23041811
https://doi.org/10.1109/ACCESS.2020.3042848
https://doi.org/10.1109/ACCESS.2020.2997330
https://doi.org/10.3390/MATH8050765
https://doi.org/10.1007/s10614-020-10054-w
https://doi.org/10.1007/s00366-019-00842-w

ISSN: 2338-3070 Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI) 215

 Vol. 10, No. 2, June 2024, pp. 201-216

Effect of SMOTE Variants on Software Defect Prediction Classification Based on Boosting Algorithm (Rahmina Ulfah

Aflaha)

[48] E. K. Sahin, “Assessing the predictive capability of ensemble tree methods for landslide susceptibility mapping

using XGBoost, gradient boosting machine, and random forest,” SN Appl Sci, vol. 2, no. 7, Jul. 2020,

https://doi.org//10.1007/s42452-020-3060-1.

[49] U. Singh, M. Rizwan, M. Alaraj, and I. Alsaidan, “A machine learning-based gradient boosting regression approach

for wind power production forecasting: A step towards smart grid environments,” Energies (Basel), vol. 14, no. 16,

Aug. 2021, https://doi.org//10.3390/en14165196.

[50] S. Feng et al., “COSTE: Complexity-based OverSampling TEchnique to alleviate the class imbalance problem in

software defect prediction,” Inf Softw Technol, vol. 129, Jan. 2021, https://doi.org//10.1016/j.infsof.2020.106432.

[51] D. Chicco and G. Jurman, “The advantages of the Matthews correlation coefficient (MCC) over F1 score and

accuracy in binary classification evaluation,” BMC Genomics, vol. 21, no. 1, Jan. 2020,

https://doi.org//10.1186/s12864-019-6413-7.

[52] W. Xia et al., “High-resolution remote sensing imagery classification of imbalanced data using multistage sampling

method and deep neural networks,” Remote Sens (Basel), vol. 11, no. 21, Nov. 2019,

https://doi.org//10.3390/rs11212523.

[53] J. H. Ri, G. Tian, Y. Liu, W. hua Xu, and J. gang Lou, “Extreme learning machine with hybrid cost function of G-

mean and probability for imbalance learning,” International Journal of Machine Learning and Cybernetics, vol. 11,

no. 9, pp. 2007–2020, Sep. 2020, https://doi.org//10.1007/s13042-020-01090-x.

BIOGRAPHY OF AUTHORS

Rahmina Ulfah Aflaha is an undergraduate studying Computer Science at Lambung

Mangkurat University. Her research focuses on predicting software defects. She can be

contacted at email: miraaflaha@gmail.com.

Rudy Herteno is currently a lecturer in the Faculty of Mathematics and Natural Science, at

Lambung Mangkurat University. He received his bachelor’s degree in Computer Science

from Lambung Mangkurat University and a master’s degree in Informatics from STMIK

Amikom University. His research interests include software engineering, software defect

prediction, and deep learning. Email: rudy.herteno@ulm.ac.id.

Mohammad Reza Faisal received the B.Sc. and M.Eng. degrees in physics and informatics

from Bandung Institute of Technology, Bandung, Indonesia, in 2004 and 2013. He also

received a B.Eng. degree in informatics from Pasundan University, Bandung, Indonesia, in

2002 and a Ph.D. in computer science from Kanazawa University, Ishikawa, Japan, in 2018.

He is currently a lecturer in the Computer Science Department, Faculty of Mathematics and

Natural Sciences, Lambung Mangkurat University in Banjarbaru, Indonesia. His research

interests include artificial intelligence applications, text mining, and software engineering. He

can be contacted at email: reza.faisal@ulm.ac.id.

Friska Abadi received his bachelor’s degree in computer science from Lambung Mangkurat

University, Banjarbaru, Indonesia, in 2011. He also received a master’s degree in informatics

from STMIK Amikom, Yogyakarta, in 2016. He is currently a lecturer in the Computer

Science Department, Faculty of Mathematics and Natural Sciences, Lambung Mangkurat

University, Banjarbaru, Indonesia. His research interests include data mining and software

engineering. He can be contacted at email: friska.abadi@ulm.ac.id.

http://issn.lipi.go.id/issn.cgi?daftar&1368096553&1&&
https://doi.org/10.1007/s42452-020-3060-1
https://doi.org/10.3390/en14165196
https://doi.org/10.1016/j.infsof.2020.106432
https://doi.org/10.1186/s12864-019-6413-7
https://doi.org/10.3390/rs11212523
https://doi.org/10.1007/s13042-020-01090-x
mailto:miraaflaha@gmail.com
mailto:rudy.herteno@ulm.ac.id
mailto:reza.faisal@ulm.ac.id
mailto:friska.abadi@ulm.ac.id

216 Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI) ISSN: 2338-3070

 Vol. 10, No. 2, June 2024, pp. 201-216

Effect of SMOTE Variants on Software Defect Prediction Classification Based on Boosting Algorithm (Rahmina Ulfah

Aflaha)

Setyo Wahyu Saputro is a lecturer in Computer Science Department, Faculty of

Mathematics and Natural Science, Lambung Mangkurat University in Banjarbaru. He

received bachelor’s degree also in Computer Science from Lambung Mangkurat Univesity,

and received his master’s degree in Informatics from STMIK Amikom University. His

research interests include software engineering and artifial intelligence applications. He can

be contacted at email: setyo.saputro@ulm.ac.id.

http://issn.lipi.go.id/issn.cgi?daftar&1368096553&1&&
mailto:setyo.saputro@ulm.ac.id

