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 Fuzzy clustering aims to produce clusters that take into account the possible 

membership of each dataset point in a particular cluster. Fuzzy C-Means 

Clustering Core and Reduct is a fuzzy clustering method is a Fuzzy C-Means 

Clustering method that has been optimized using the reduction of Core and 

Reduct dimensions. The method studied is highly dependent on the distance 

function used. As a further in-depth study, this study was compiled to see the 

performance of the Fuzzy C-Means Clustering Core and Reduct using various 

distance functions. We aim to see how consistent the results of this method are 

across various distance functions and find the best distance function. The seven 

distance functions are applied to the same dataset. The seven distances are the 

Euclidean, Manhattan, Minkowski, Chebyshev, Minkowski-Chebyshev, 

Canberra, and Averages distances. We use UCI Machine Learning datasets for 

this research. The quality of the clustering results is compared through several 

measures. Accuracy, Silhouette score, and Davies Bouldin Index are used as 

internal measurements. The results of Fuzzy C-Means Core and Reduct 

clustering on all distance functions have significantly decreased computational 

load. Accuracy and purity values can be maintained with values above 80%. 

There was an increase in the value of the Silhouette Coefficient Score and a 

decrease in the Davies Bouldin Index after the application of dimension 

reduction. This means the quality of the clustering results can be maintained. 

The distance with the best evaluation result is the Euclidean distance. This 

method runs consistently across all tested distance functions. 
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1. INTRODUCTION  

Current technological developments produce data that is not only large but also continuous. In fact, in 

recent times, humans have produced more data than all data that has been previously generated [1]. Data at this 

time is available massively, in large quantities, and in various types [2]. This kind of data is termed big data. 

This forces us to be able to extract important information from this abundant data. 

One of the important pieces of information in the data is the data group. Data grouping is very useful for 

solving various problems in life. This is often applied as in Customer Segmentation, Recommendation, Image 

Processing, and others [3]. Often the data clusters have not been previously identified. So, supervised learning 

cannot be applied. One of the things that can be used as the basis for grouping data is similarity. This method 

of grouping is called clustering [4]–[6]. The next problem is often data grouped into a group arbitrarily, without 

considering the possibility to join in other groups. Maybe the computation process will run faster, but its 

accuracy is questionable. Fuzzy clustering has been proposed as a solution to solve this problem. 

The degree of membership is the basis of the fuzzy clustering method [7]. Based on that, say each data 

point against each exclusion cluster. Fuzzy C-Means clustering is a popular method used in fuzzy clustering 

[8]. Fuzzy C-Means clustering is a distance-based clustering that applies the concept of fuzzy logic [9]. The 

clustering process goes hand in hand with the iteration process to minimize the objective function [3][7][8]. 

The objective function is the sum of the multiplication of the distance between the data points to the nearest 
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cluster center with the degree of membership [10]. The more iterations, the decreasing the value of the function 

should be. The distance function used in this method has a key role [11].  

Various studies on the effect of distance in the clustering method have been carried out. Some of the 

results of previous studies that no distance is more dominant and produce outputs that are not much different. 

The results of clustering are very dependent on the dataset used [3]. Euclidean and Manhattan / City Block,  

Chebyshev, and Minkowski distances have been identified for their effects in the K-Means Clustering 

algorithm [11][12]. The results of both studies indicate that the Manhattan distance has a slower computation 

time than the other distances. In another study, the Euclidean, Manhattan / City Block, Canberra, and 

Chebyshev distances were applied and evaluated on the fuzzy clustering algorithm [13]–[15]. The results of 

this study concluded that the results of clustering were very dependent on the data used [16]. In our latest 

research, the combined Minkowski and Chebyshev distances can also be used to optimize Fuzzy C-Means 

clustering [17]. Another form of Euclidean distance, namely Average distance, can also be used in the 

clustering algorithm and produces better results than Euclidean distance [18]. 

Another way to optimize the clustering method is to apply the dimension reduction method [19]. The 

dimension reduction method can reduce data dimension but still maintain data characteristics [20]. One of the 

dimensional reduction methods is Core and Reduct. The Core and Reduct method from the Rough Set theory 

is proven to be able to improve the performance of Fuzzy C-Means Clustering at the Euclidean distance 

function [3][21]. In this study, we are doing an expansion of the research on the last results. We want to know 

whether the consistent application of Core and Reduct can reduce the computational load on Fuzzy C-Means 

Clustering with various distance functions. The second objective is that we want to find the best distance for 

the new method. The data used are also limited to five UCI machine learning data, namely iris data, yeast data, 

seeds data, sonar data, and hill-valley data [22]. In this study, the method is only implemented on numerical 

data. The Core and Reduct dimension reduction method used was also developed limited to numerical data 

only. 

 

2. RESEARCH METHOD  

2.1. Fuzzy C-Means Core and Reduct Clustering 

Fuzzy C-Means Clustering (FCM) is a clustering method that allows certain data can be induced in two 

or more clusters [7]. This method was invented by Dunn in 1973 and developed further by Bezdek in 1981. 

The usual application for this method is for pattern introduction. This method is based on minimalizing the 

objective function, 
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where m  is a certain real number higher than 1, iju is the membership degree of ,ix in cluster j , ix represents 

the-i data, jc  represents the cluster centroid j , and *  is the norm which states the similarity between data 

and the cluster centroid. 

Fuzzy partition is applied to trough the continuous optimization process of the objective function which 
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The iteration will be terminated when 
    1

max ,
k k

ij ij iju u

    where   is the termination criteria are 

valued between 0 and 1 and k is the number of the iteration process. This procedure is convergence to 

minimum local point or saddle point of mJ . 

The algorithm of Fuzzy C-Means Clustering consist of these steps [3]: 

1. Initialization of 
 ,ijU matriks u U   
0

. 
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2. In the steps of –k, measure the cluster centroid vector of  k

jC c     with  k
U as 
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3. Update the value of 
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4. If 
   1k k

U U

   , then terminate the iteration. If not, back to step 2. 

In this method, the value of the objective function and membership degree is much related. During the 

initial iteration process, we assume that each of the data coordinates already have the value of membership 

degree for each of the existing cluster. Then, this value will be continuously updated through (2). When (2) is 

continuously updated, (1) will also keep updated towards its minimum value. One of the challenges of the 

clustering method is the large computation load. To overcome this, in this method, before entering the 

clustering process, a dimensional reduction process is carried out using Core and Reduct. The dataset for 

clustering problems can be viewed as an information table [3]. In the information table, the set of attributes 

R A  is called a reduct if R satisfies the following two conditions: 

1)    ;IND R IND A   (6) 

2)     , .a R IND R a IND A      (7) 

Condition one states that for each object pair that cannot be distinguished by a subset R, it also cannot be 

distinguished by A and vice versa. The second condition states that there are object pairs that cannot be 

distinguished by R - {a} but can be distinguished by A. This means that R is the minimum set of attributes that 

can maintain the indiscernibility relationship IND (A). Usually, there is more than one reduction in an 

information table. The set of all reductions from the information table T is denoted as RED (T). 

Then, the cores of the attribute set R A are as 

   CORE R RED R I   (8) 

Algorithm 1 is Fuzzy C-Means Clustering with Core and Reduct dimensional. 

Algorithm 1. Fuzzy C-Means Core & Reduct Clustering 

INPUT: 

Data input is in the form of variables  and  expresses objects and 

attributes. Data is a  matrix, where n is a lot of data and m is the number of data attributes. 

 

PROCESS BEGIN 

1. If the dataset is not numeric data, then encoding data is done. If not, then proceed to the next process. 

2. Apply the core and reduct method so that the number of variables   will be a number 

of new variables , with p m . 

3. Applying the fuzzy c-means clustering method so that data clusters are obtained. 

4. Cluster evaluation. 

PROCESS END 

 

OUTPUT: 

The value of the objective function, computational time, purity, Davies Bouldin Index, Silhouette Score and 

accuracy. 

 1 2 nX x , x , , x L  1 2 mY y , y , , y L

n m

 1 2 mY y , y , , y L

 1 2 pY y , y , , y L
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2.2. Distance Function 

a. Euclidean Distance 

Euclidean distance is known as the most common and applied distance for the Fuzzy C-Means 

clustering process. For 𝑥 and 𝑦 coordinates, this distance is defined as 

   
2

1

,
n

euclidean k k

k

d x y x y


      (9) 

where 
kx and 

ky  are the value of x  and y  on the certain dimension of n . This distance becomes the 

standard distance for the fuzzy c-means clustering method [11][18]. 

 

b. Manhattan Distance 

Manhattan distance is defined as the addition of all of the attributes distance. Hence, for two 

coordinates data of 𝑥 and 𝑦 in dimension 𝑛, the Manhattan distance for both of the 

coordinates is defined as [12]: 

 tan
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where 
kx and 

ky  are the value of x  and y  on the certain dimension of n . 

 
c. Chebyshev Distance 

This distance is also known as the maximum distance, which is defined as the maximum 

value of the existing attributes distance. The distance for two coordinates data of 𝑥 and 𝑦 in 

dimension 𝑛 is defined as [12]: 

( , ) maxn

chebisev k k kd x y x y 1     (12) 

where 
kx and 

ky  are the value of x  and y  on the certain dimension of n . 

 
d. Minkowski Distance 

Minkowski distance is the formulation of  the metric distance, which defined as [12]: 
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where p  is functions as the Minkowski parameter. In Euclidean distance, the value p  is 

equal to 2. For Manhattan distance, the value of p  is equal to 1, and for Chebyshev distance, 

the value of p is equal to ∞. The metric condition for Minkowski distance is fulfilled as long 

as 1p  . 

 
e. Mikowski- Chebyshev Distance 

Minkowski-Chebyshev distance is invented by Rodrigues in 2018 [17]. The combination of 

Minkowski and Chebyshev distance with the weight of  w1  and w2  is defined as (14). When 

w1  is bigger than w2 , this distance is similar to Minkowski distance, and vice versa. The 

Minkowski-Chebyshev distance is defined as [23]: 
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f. Canberra Distance 

Canberra distance is defined as the addition of the absolute value of fraction difference 

between two data. The formula of this distance is [16]: 

( , )
n

k k

canbera

k k k

x y
d x y

x y







1

    (15) 

This distance is very sensitive towards alteration when the value of both of the analyzed 

coordinates is close to 0. This distance is chosen because of the similarity of its character to 

Manhattan distance. 

 
g. Average Distance 

Average distance is the modification of the Euclidean distance. This modification is applied 

to improve the clustering result [18]. This distance is defined as: 

   
2

1

1
,

n

average k k

k

d x y x y
n 

     (16) 

 

2.3. Cluster Evaluation 

Cluster evaluation is applied to determine the clustering algorithm level of accuracy and the availability 

of cluster labels. For this research, four tests are applied to evaluate the clustering process, which is purity test, 

accuracy test, Davies Bouldin Index (DBI), and Silhouette coefficient score. 

 

1. Purity 

Purity is used to calculate the purity of a cluster. Purity calculation for each cluster obtained is done 

by taking the most objects entered in the C-cluster where 1 i C   and C’ are the original h-class with 

1 h C'   As for the overall purity of the C cluster, it is done by adding up each purity in the C cluster 

and dividing it by the number of objects defined as follows: 

 
c

i h c i hi

1
purity P,C max , P C

n
       (17) 

where  1 2 3 cP P ,P ,P , P L  is the cluster set and  1 2 3 cC C ,C ,C , ,C L  is the original class set. Poor 

clustering has a purity value close to 0. This means that there are no cluster results that match the original 

class. While a good cluster has a value of purity 1. This means that the cluster results are in accordance 

with the original class. 

 

2. Accuracy 

Accuracy is calculated by adding up the number of objects included in the 𝑖-cluster, where  1 i C   

the exact class is then divided by the number of data objects. Accuracy is defined as 

c

1i 1
a

r
n




     (18) 

where ia  is the number of objects in the 𝑖-cluster that correspond to the original class and 𝑛 number of 𝑛 

objects. Good accuracy results if all clusters match the original class and then divided by the amount of 

data will produce a value of 1. 

 

3. Davies Bouldin Index 

Davies Bouldin Index (DBI) is one of the methods used to measure cluster validity in a clustering 

method. The purpose of measurement with DBI is to maximize the distance between clusters (inter-

cluster) and to minimize the distance between data points (intra-cluster) in the same cluster [17]. The 

Davies Bouldin Index (DBI) was introduced by David L. Davies and Donald W. Bouldin in 1979. Before 

calculating the DBI, first, calculate the variance of each cluster. 
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 
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where x is the mean of cluster 𝑥 and n is the number of cluster members. 

Then, calculate the Davies-Bouldin Index (DBI) with 
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, where iC is 𝑖-th cluster and ic is 𝑖-th cluster center. 

 

4. Silhouette Coefficient Score 

Silhouette Coefficient Score (SCS) is an internal metric that measures the cohesiveness and 

separation of clusters at the same time [24]. SCS calculates the average distance in a cluster and the 

minimum distance between an object to another cluster as follows: 

 1

1

max ,

n
i i

i i i

SCS
n 

 


 
     (20) 

variable i  is the average distance of objects in a cluster, namely, 

, j i
i jj i x c

i

i

x x

c

 

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and  i  represents the distance between an object ix  with the center of the cluster ,j iw  , which is 

calculated as  

 min , 1,2, , .i i jx w j k j i    L  

SCS values can range from -1 to 1,  1 1 ,SCS    where one means the grouping solution is true and -

1 means the grouping solution is wrong. 

 

2.4. Dataset 

The dataset used in this study is a dataset taken from the UCI Machine Learning website [22]. Table 1 

presents a brief description of the dataset used in this study. All of the datasets in Table 1 are numeric types. 

 

Table 1. Dataset 

 Dataset Object Variables Class 

Iris 150 4 3 

Seeds 210 7 3 

Yeast 1484 8 10 

Sonar 208 60 2 

Hill Valley 606 100 2 

 

2.5. Research Method 

This research is a numerical simulation using the Fuzzy C-Means Core and Reduct Clustering method. 

The program is structured using Python 3.0. This clustering method is carried out using seven different distance 

functions then the results are visualized and analyzed. The research steps are presented in Fig. 1. 

 

3. RESULTS AND DISCUSSION  

The initial step of this method is to reduce the dimensions of the dataset. The dataset in Table 1 is reduced 

using the Core and Reduct method. The result of this dimension reduction is a new dataset with fewer variables. 

The results of the reduction are presented in Table 2. 

Based on the result in Table 2, Core and Reduct work better for the data with high dimensions. As for the 

low dimension dataset, it tends to be difficult to determine the core of the analyzed data. These results are 

consistent with research in the same field [21]. Data with low dimensions will make the computation load 

lower and the computation time can be increased significantly. 
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Fig. 1. Research Flowchart 

 
Table 2. Core and Reduct results 

Dataset Before Reduction After Reduction 

Iris 4 3 

Seeds 7 2 

Yeast 8 4 

Sonar 60 2 

Hill Valley 100 2 

  

The main objective of Fuzzy C-Means clustering is to acquire the objective function value as low as 

possible. The lower the objective function, the better the result of the fuzzy c-means clustering application. 

This means that the group of data is more clearly separated. Fig. 2 portrayed the comparison between the values 

of objective function acquired from Fuzzy-C Means and Fuzzy C-Means Core and Reduct. For five simulated 

datasets, Core and Reduct able to decrease the value of objective function close to 0% remains for the Euclidean 

distance, Manhattan distance, Canberra distance, and Minkowski distance. These results support previous 

research, which states that Euclidean is one of the best performing distances [12]. 
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Fig. 2. Objective function average values 

 

The process of computation works in a lower dimension that is resulting in the decrease of the computing 

weight. This phenomenon will affect the computing time and the number of iteration processes applied. Fig. 3 

depicts the comparison of computing time in these two applied Fuzzy C-Means methods.  At all distances, the 

computation time decreased significantly. The highest drop occurred at the Minkowski distance. However, the 

Euclidean distance still has the lowest computation time of all the distances used. These results indicate the 

consistency of the Core and Reduct method which is able to reduce the computational load on the Fuzzy C-

Means Clustering method. These results complement previous studies which were limited to the Euclidean and 

Minkowski-Chebyshev distances [3][17]. 

 

 
Fig. 3. Average computing time 

The lower computation time is usually also due to the iteration time it takes to converge. If the number 

of iterations is low, then fewer steps must be taken. Fig. 4 illustrates the comparison of the average number of 

iteration until convergent from both of the analyzed methods. The result shows that the Core and Reduct 

method is relatively good enough to decrease the computing time of Fuzzy C-Means clustering. This behavior 

is caused by the decrease of the number of iteration until convergent in the application of Fuzzy C-Means Core 

and Reduct. The acquired result is not quite significant because Core and Reduct only decrease the number of 

attributes, while the data record is stagnant. 
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Fig. 4. Number of Iteration Process Until Convergent 

 

Another expected result from the application of dimension reduction is the good quality of clustering 

result, which has to be similar to the result of the common clustering process. The good cluster output should 

have accuracy and purity valued close to 1. Accuracy describes the accuracy of the working clustering model. 

Fig. 5 presents the accuracy value for each distance function. The average accuracy for all distances is 0.47. 

The distance with the highest accuracy value is Euclidean, with a value of 0.56. Meanwhile, the distance with 

the lowest accuracy value is the Minkowski distance with a value of 0.38. However, the impact of the 

application of the reduction of the Core and Reduct dimensions is to compare the accuracy results before and 

after the dimensional reduction. It can be seen that in Euclidean, Manhattan, Minkowski-Chebyshev, Canberra, 

the average accuracy can be maintained above 80%. At Minkowski's distance, the accuracy drops drastically 

until only around 60% remains. This result looks like it can be improved by combining it with Chebysev's 

distance. This supports the research that Minkowski-Chebysev's new distance has a great impact and can be 

used for the optimization of Machine Learning methods [17][23].  

 

 
Fig. 5. Average Accuracy 

A good cluster result has a purity value close to 1. The result of the average purity value in the Fuzzy C-

Means Core and Reduct Clustering method is 0.61. This method succeeded in achieving the highest purity 

value in the Canberra distance function with an average value of 0.64 and the lowest at the Minkowski-

Chebyshev distance with an average value of 0.55. This result is quite good, considering the average purity is 

more than 0.5. When compared with the Fuzzy C-Means method, the purity value can be maintained very well. 

The purity value on the reduced data is still above 80% of the original result. This means that even though it is 
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reduced, the quality of the clusters can be maintained. The result of this paper expands the previous paper [3]. 

Fig. 6 presents these results. 

 

 
Fig. 6. Average Purity 

 

Another measure of the goodness of a cluster is the Silhouette Coefficient Score. The higher value of this 

metric, the more correct the clustering results can be. Interesting research results emerge in this section. On 

average, Fuzzy C-Means Clustering with Core and Reduct application is able to improve the value of silhouette 

score from 0.399 to 0.507. This means that the Core and Reduct method consistently across all distance 

functions can improve the quality of cluster results. Fig. 7 presents the Silhouette Coefficient Score value at 

each distance for the two methods. Nearly all distance functions have a significant increase for this measure. 

The Minkowski-Chebyshev distance yields the worst score in this case.  

 

 
Fig. 7. The average value of the Silhouette Coefficient Score 

Fig. 8 shows the comparison of the average DBI results between the Fuzzy C-Means Clustering method 

and Fuzzy C-Means Core and Reduct Clustering. A cluster will be considered to have an optimal clustering 

scheme if it has a minimal Davies Bouldin Index (DB) (close to 0) [17]. This new method is able to decrease 

its remaining value to 53%. This means that the reduction of Core and Reduct dimensions increases the results 

of Fuzzy C-Means clustering. This applies to all distance functions. 

Few of the aforementioned results are linear with the previous research [25][26]. R. Zhao, L. Gu, dan X. 

Zhu also did research in the same field as this research. Their research resulted in the combination of the C-

Means Clustering and Reduct functioned as Rough Set Feature Selection which able to improve the accuracy 

with a value averaged in 1% [21]. The addition of the Core process applied in this research guaranteed that the 

result of the dimension reduction was only acquired from the core of the dataset only. 
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Fig. 8. Average DBI 

 

The best result of this research is acquired on the certain value of U random to initiate the fuzzy c-means 

algorithm. In the future, an optimization process to determine the initial value for acquiring the best cluster 

centroid can be developed to further improve the Fuzzy C-Means clustering performance. Table 3 illustrate the 

valuation of clustering result from the application Fuzzy C-Means Clustering Core and Reduct with seven 

different distance function parameter. Based on that result, Euclidean distance is still considered the best 

distance function to be applied.  

 

Table 3. Rank-based Valuation of FCM-CR 

Distance 

function 
Number of 

Iteration 

Computing 

Time 

Objective 

Function 
Accuracy SCS DBI Purity Total 

Euclidean 7 7 2 6 7 7 4 45 

Manhattan 2 5 1 7 4 5 5 35 

Minkowski 3 2 3 5 6 2 6 31 

Chebyshev 1 4 5 1 1 3 1 17 

Minkowski-

Chebyshev 
1 1 4 2 3 4 2 19 

Canberra 2 6 7 3 2 6 3 32 

Average 1 3 6 4 5 1 7 34 

 

4. CONCLUSION 

The Core and Reduct, dimension reduction method can reduce the computational burden of the Fuzzy C-

Means Clustering method on all distance functions. The value of the objective function can be significantly 

reduced so that the number of iterations and computation time can also be significantly reduced. These results 

indicate that the reduction of the Core and Reduct dimensions works consistently on the Fuzzy C-Means 

clustering method with various distance functions. Even so, the quality of the cluster results from this method 

can still be maintained. These results are shown in the increase in the Silhouette Coefficient Score, the decrease 

in DBI, and the accuracy and purity values which are still above 80%. Euclidean distance is the best distance 

with the result of the number of iterations, computation time, the best Silhouette Coefficient Score. The Fuzzy 

C-Means Clustering method with the reduction of Core and Reduct dimensions is not recommended for the 

Minkowski-Chebyshev distance function. In the future, research on the development of the Fuzzy C-Means 

Clustering Core and Reduct method can be applied to image data, video, or other data types. 
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