Klasifikasi Untuk Diagnosa Diabetes Menggunakan Metode Bayesian Regularization Neural Network (RBNN)
DOI:
https://doi.org/10.26555/jifo.v11i1.a5452Abstract
Data mining tidak hanya digunakan untuk membahas hal-hal yang berbau informatika, akan tetapi bisa digunakan untuk meneliti berbagai hal, bahkan pola untuk menemukan gejala diabetes pada pasien . Pada paper ini membahas cara memprediksi apakah seseorang mengidap penyakit diabetes menggunakan Data Set yang telah diperoleh dari Machine Learning terlebih dahulu. Pelatihan dilakukan dengan metode Bayesian Regularization Neural Network (RBNN) yang diharapkan dapat memberikan hasil yang diharapkan sesuai dengan prediksi pada penelitian kali ini.References
E. Wahodo, “Matlab,†1 Oktober 2015. [Online]. Available: http://edywahono.web.unej.ac.id/2015/10/01/matlab/. [Diakses Selasa Desember 2016].
A. Indriani, Klasifikasi Data Forum dengan menggunakan Metode Naive Bayes Classifier, 2014.
C. Stergiou dan D. Sigano, “Neural Network,†[Online]. Available: https://www.doc.ic.ac.uk/~nd/surprise_96/journal/vol4/cs11/report.html. [Diakses Rabu Desember 2016].
C. Stergiou dan D. Sigano, “Neural Network,†[Online]. Available: https://www.doc.ic.ac.uk/~nd/surprise_96/journal/vol4/cs11/report.html. [Diakses Rabu Desember 2016].
A. Hanum, Rabu Agustus 2016. [Online]. Available: http://www.harianjogja.com/baca/2016/08/31/jumlah-penderita-diabetes-indonesia-peringkat-ke-7-di-dunia-749111. [Diakses Rabu Desember 2016].
M. Nielsen, “Neural Networks and Deep Learning,†Januari 2016. [Online]. Available: http://neuralnetworksanddeeplearning.com/. [Diakses Rabu Desember 2016].
“Artificial neural network,†Wikipedia, [Online]. Available: https://en.wikipedia.org/wiki/Artificial_neural_network. [Diakses Rabu Desember 2016].
M. H. Meinanda, M. Annisa, N. Muhandri dan K. Suryadi, “Prediksi masa Studi Sarjana dengan Artificial Neural Network,†INTERNETWORKING INDONESIAN JOURNAL, 2009.
Downloads
Published
Issue
Section
License
Authors who publish with Jurnal Informatika (JIFO) agree to the following terms:
- Â Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY-SA 4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
Â
Â
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.