SISTEM VERIFIKASI WAJAH MENGGUNAKAN JARINGAN SARAF TIRUAN LEARNING VECTOR QUANTIZATION
Abstract
Verifikasi wajah merupakan salah satu teknologi biometrika yang menjadi perhatian para peneliti. Banyak sekali sistem aplikasi yang berbasis kepada verifikasi wajah misalnya: akses pintu, akses mesin ATM, sistem presensi kehadiran, dll. Pada makalah ini akan dibahas perancangan dan pembuatan sistem verifikasi wajah manusia menggunakan metode ekstraksi menggunakan metode SPCA (Simple Principle Component Analysis) dan teknik klasifikasi jaringan saraf tiruan Learning Vector Quantization. Data citra wajah yang digunakan berasal dari 5 orang yang terdiri masing-masing sebanyak 10 citra wajah untuk proses pelatihan dan juga masing- masing sebanyak 10 wajah untuk proses pengujian. Hasil pengujian unjuk kerja sistem didapat nilai FRR rata-rata 0% dan FAR rata-rata = 1,55%.
Kata kunci : verifikasi wajah, SPCA, learning vector quantizationÂ
References
Fadlil, A., 2006. Program Sederhana Sistem Pengenalan Wajah Menggunakan Fungsi Jarak, Jurnal TELKOMNIKA Vol. 2 No.1, Teknik Elektro UAD, Desember 2006, Yogyakarta.
Fadlil, A., 2007. Perbandingan Pengklasifikasi Fungsi Jarak Dan Jaringan Syaraf Tiruan Pada Sistem Pengenalan Wajah, Prosiding SNATI 2007, Yogyakarta.
Fauset L., “Fundamentals of Neural Networksâ€, Prentice Hall Inc., USA, 1994.
Jain, A. K., Ross, A., and Prabhakar, A., 2004. An Introduction to Biometric Recognition, IEEE Transactions on Circuits and Systems for Video Technology, vol. 14, no. 1, January 2004, pp. 4-20.
Prabhakar, S., Pankanti, S.,Jain, A.K., 2003. Biometric Recognition: Security and Privacy Concerns, Security & Privacy Magazine, IEEE , Volume: 1 , Issue: 2 , Mar-Apr 2003, pp. 33 – 42.
Roberto, B. and Tomaso, P., 1993. Face Recognition: Features versus Templates, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 15, no. 10, October 1993, pp 1042-1052.
Wilson, D. R. and Tony R. M., 1997. Improved Heterogeneous Distance Functions, Journal of Artificial Intelligence Research, vol 6 , pp. 1-34.
Yang, M., Kriegman, D. J., and Ahuja, N., 2002. Detecting Face in Images: A Survey, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 24, no. 1, January 2002, pp 34-58.
Zhao, W., Chellappa, R., Phillips, P. J., and Rosenfeld, A., 2005, “Face Recognition: A Literature survey, ACM Computing Surveysâ€, Vol. 35, No. 4, pp. 399–458.
Downloads
Published
Issue
Section
License
Authors who publish with Jurnal Informatika (JIFO) agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY-SA 4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.