A Hybrid Approch Tomato Diseases Detection At Early Stage
DOI:
https://doi.org/10.26555/jifo.v17i1.a24759Keywords:
Faster Region- Based Convolutional Neural Network, Fuzzy C MeansAbstract
In traditional farming practice, skilled people are hired to manually examine the land and detect the presence of diseases through visual inspection, but the visual inspection method is ineffective. High accuracy of disease detection is one of the most important factors in crop production and reducing crop losses. Meanwhile, the evolution of deep convolutional neural networks for image classification has rapidly improved the accuracy of object detection, classification and system recognition. Previous tomato detection methods based on faster region convolutional neural network (RCNN) are less efficient in terms of accuracy. Researchers have used many methods to detect tomato leaf diseases, but their accuracy is not optimal. This study presents a Faster RCNN-based deep learning model for the detection of three tomato leaf diseases (late blight, mosaic virus, and leaf septoria). The methodology presented in this paper consists of four main steps. The first step is pre-processing. At the second stage, segmentation was done using fuzzy C Means. In the third step, feature extraction was performed with ResNet 50. In the fourth step, classification was performed with Faster RCNN to detect tomato leaf diseases. Two evaluation parameters precision and accuracy are used to compare the proposed model with other existing approaches. The proposed model has the highest accuracy of 98.6% in detecting tomato leaf diseases. In addition, the work can be extended to train the model for other types of tomato diseases, such as leaf mold, spider mites, as well as to detect diseases of other crops, such as potatoes, peanuts, etc.
Downloads
Published
Issue
Section
License
Authors who publish with Jurnal Informatika (JIFO) agree to the following terms:
- Â Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY-SA 4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
Â
Â
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.