Revisiting the challenges and surveys in text similarity matching and detection methods
DOI:
https://doi.org/10.26555/jifo.v16i3.a23471Keywords:
Text similarity, Similarity detection, Document similarity, Text matching, Natural language processingAbstract
The massive amount of information from the internet has revolutionized the field of natural language processing. One of the challenges was estimating the similarity between texts. This has been an open research problem although various studies have proposed new methods over the years. This paper surveyed and traced the primary studies in the field of text similarity. The aim was to give a broad overview of existing issues, applications, and methods of text similarity research. This paper identified four issues and several applications of text similarity matching. It classified current studies based on intrinsic, extrinsic, and hybrid approaches. Then, we identified the methods and classified them into lexical-similarity, syntactic-similarity, semantic-similarity, structural-similarity, and hybrid. Furthermore, this study also analyzed and discussed method improvement, current limitations, and open challenges on this topic for future research directions.Downloads
Published
2022-09-30
Issue
Section
Computational Intelligence
License
Authors who publish with Jurnal Informatika (JIFO) agree to the following terms:
- Â Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY-SA 4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
Â
Â
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.