Classifying the characteristics of insurance shares: a k-means clustering approach

Authors

  • Y Utami Universitas Muhammadiyah Malang
  • I Zuhroh Universitas Muhammadiyah Malang
  • V Prasetya Universitas Muhammadiyah Malang
  • Mochamad Rofik Universitas Muhammadiyah Malang

DOI:

https://doi.org/10.26555/jifo.v15i3.a23372

Keywords:

k-means, insurance share price, rate of return

Abstract

This study aims to apply the k-means clustering method in understanding the characteristics of insurance shares. The eight issuers are divided into three clusters based on price and rate of return. The k-means method's application shows that each cluster has different characteristics, especially for the price variable. Test with panel data regression also discovers different patterns between clusters 2 and 3 in responding to changes in interest rates. The findings of this study indicate that k-means clustering can be used as an initial analysis to understand the characteristics of issuers that investors can use to increase the optimal probability of return.

References

Y. Utami, “Indeks Saham Syariah Indonesia: Pergerakan Harga dari Perspektif Asimetri

Informasi,” J. Inov. Ekon., vol. 4, no. 02, pp. 41–48, 2019, doi: 10.22219/jiko.v4i2.9851.

B. Widagdo and N. R. Satiti, “Indonesian Capital Market Reaction Toward November, 4th

Demonstration in Jakarta,” J. Innov. Bus. Econ., vol. 2, no. 01, pp. 29–36, Dec. 2018, doi:

22219/JIBE.V2I01.5561.

I. Zuhroh, M. Rofik, and A. Echchabi, “Banking stock price movement and macroeconomic

indicators: k-means clustering approach,” http://www.editorialmanager.com/cogentbusiness, vol. 8, no.

, 2021, doi: 10.1080/23311975.2021.1980247.

R. Nilavongse, M. Rubaszek, and G. S. Uddin, “Economic policy uncertainty shocks, economic

activity, and exchange rate adjustments,” Econ. Lett., vol. 186, Jan. 2020, doi:

1016/j.econlet.2019.108765.

A. S. Yang and A. Pangastuti, “Stock market efficiency and liquidity: The Indonesia Stock

Exchange merger,” Res. Int. Bus. Financ., vol. 36, pp. 28–40, Jan. 2016, doi:

1016/J.RIBAF.2015.09.002.

K. Lim and C. Hooy, “The delay of stock price adjustment to information: A country-level

analysis,” Econ. Bull., vol. 30, no. 2, pp. 1609–1616, 2010, Accessed: Dec. 07, 2022. [Online].

Available: https://ideas.repec.org/a/ebl/ecbull/eb-10-00033.html

H. P. Kriegel, E. Schubert, and A. Zimek, “The (black) art of runtime evaluation,” Knowl. Inf.

Syst., vol. 52, no. 2, pp. 341–378, Aug. 2017, doi: 10.1007/S10115-016-1004-2.

A. Likas, N. Vlassis, and J. J. Verbeek, “The global k-means clustering algorithm,” Pattern

Recognit., vol. 36, no. 2, pp. 451–461, Feb. 2003, doi: 10.1016/S0031-3203(02)00060-2.

A. K. Jain, “Data clustering: 50 years beyond K-means,” Pattern Recognit. Lett., vol. 31, no. 8, pp.

–666, Jun. 2010, doi: 10.1016/J.PATREC.2009.09.011.

Downloads

Published

2021-09-30