Improved data storage performance based modified-SPEED algorithm
Abstract
With the rising demand for smart devices and smart home systems, automation and activity prediction has become a vital aspect of people's everyday lives. Researchers have focused on developing approaches that detect user activity patterns and used them to predict future actions. One such system is Modified Sequence Prediction via Enhanced Episode Discovery (M-SPEED), which uses spatiotemporal daily life activities to analyze user behaviors. However, the low accuracy of this algorithm can be a limiting factor inefficient activity prediction. Also, the computational overhead of run time and memory causes this algorithm to show poor performance in large datasets. This research focuses on modifying the M-SPEED algorithm to improve its capability to run on a larger dataset while at the same time improving run time. The accuracy is also improved to make it more effective in real-world applications. Proof of algorithm efficiency is provided to ensure system validity, and simulation is carried out on real-life data. The results demonstrate a 66.69% improvement in cumulative memory efficiency, 37% faster run time, and 8.22% better accuracy confirming the proposal's effectivenessDownloads
Published
2021-05-08
Issue
Section
Articles
License
Authors who publish with Jurnal Informatika (JIFO) agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY-SA 4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.