Prediction of standard penetration test value on cohesive soil using artificial neural networks
Abstract
Soil investigation is the main key in starting construction. Standard Penetration Test (SPT) and Cone Penetration Test (CPT) are field tests often used to estimate soil parameters for foundation design purposes. The SPT value (N-SPT) shows a correlation between the CPT value and other soil parameters. At present, there have been many conventional correlations examining these correlations, but the nonlinear nature of the soil due to very complex soil formations means that this correlation cannot be used in all situations. This research aimed to predict the value of SPT on cohesive soil based on CPT test data and soil physical properties using artificial neural network capabilities using the Backpropagation algorithm, and the activation function was bipolar sigmoid. This study used 284 data from several places in Sumatra Island, Indonesia, with data input were tip resistance, shaft resistance, effective overburden pressure, percentage of liquid limit, plastic limit, sand, silt, and clay. The results showed that the training data of RMSE was 3.441, MAE and R2 were 0.9451 and 2.318, respectively while test data showed RMSE, MAE, R2 were 2.785, 2.085, and 0.9792, respectively. It means that the proposed artificial neural network NN_Nspt(C) was promising to predict the N-SPT value with a minimum error value and a strong regression equation.Downloads
Published
2021-05-07
Issue
Section
Articles
License
Authors who publish with Jurnal Informatika (JIFO) agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY-SA 4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.